Home
Class 9
MATHS
Given log(10 ) x = 2a and log(10) y = (...

Given `log_(10 ) x = 2a and log_(10) y = (b)/(2)`.
Write ` 10 ^(a) ` in terms of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express \( 10^a \) in terms of \( x \) given that \( \log_{10} x = 2a \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \log_{10} x = 2a \] 2. **Rearrange the equation to express \( a \):** To isolate \( a \), we can divide both sides by 2: \[ \frac{1}{2} \log_{10} x = a \] 3. **Use the properties of logarithms:** According to the properties of logarithms, we can express \( a \) as: \[ a = \log_{10} (x^{1/2}) \] This follows from the property \( k \cdot \log_b a = \log_b (a^k) \). 4. **Express \( 10^a \):** Now, we can express \( 10^a \) using the definition of logarithms: \[ 10^a = 10^{\log_{10} (x^{1/2})} \] 5. **Apply the inverse property of logarithms:** By the property of logarithms, \( 10^{\log_{10} b} = b \): \[ 10^a = x^{1/2} \] 6. **Final expression:** Therefore, we can write: \[ 10^a = \sqrt{x} \] ### Final Answer: \[ 10^a = \sqrt{x} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . Write 10 ^(2b+1) in terms of y .

Given log_(10)x = a and log_(10) y = b . (i) Write down 10^(a - 1) in terms of x. (ii) Write down 10^(2b) in terms of y. (iii) If log_(10) P = 2a - b , express P in terms of x and y.

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . If log_(10) P = 3a - 2b express P in terms of x and y.

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If log_(2) x = a and log_(3) y = a , write 72^(@) in terms of x and y.

If log_(10) a = b , find 10^(3b - 2) in terms of a.

Given 2 log_(10) x + 1 = log_(10) 250 , find : (i) x (ii) log_(10) 2x

If log_(10) x = y ," then find "log_(1000)x^(2)" in terms of " y .

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0