Home
Class 9
MATHS
Foctorise : x^(2) +(1)/(x^(2)) - 2 ...

Foctorise :
` x^(2) +(1)/(x^(2)) - 2 -3 x+ (3)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 + \frac{1}{x^2} - 2 - 3x + \frac{3}{x} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^2 + \frac{1}{x^2} - 2 - 3x + \frac{3}{x} \] ### Step 2: Combine like terms Rearranging the expression, we can group the terms: \[ (x^2 - 3x) + \left(\frac{1}{x^2} + \frac{3}{x} - 2\right) \] ### Step 3: Recognize a perfect square Notice that \( x^2 - 3x \) can be rewritten using the formula for a perfect square: \[ x^2 - 3x = (x - \frac{3}{2})^2 - \frac{9}{4} \] However, we will focus on the term \( x^2 + \frac{1}{x^2} - 2 \) first. ### Step 4: Use the identity for squares The expression \( x^2 + \frac{1}{x^2} - 2 \) can be recognized as: \[ (x - \frac{1}{x})^2 \] So we can rewrite the expression as: \[ (x - \frac{1}{x})^2 - 3x + \frac{3}{x} \] ### Step 5: Substitute \( t = x - \frac{1}{x} \) Let \( t = x - \frac{1}{x} \). Then we have: \[ t^2 - 3t \] ### Step 6: Factor out \( t \) Now, we can factor out \( t \): \[ t(t - 3) \] ### Step 7: Substitute back for \( t \) Substituting back \( t = x - \frac{1}{x} \): \[ (x - \frac{1}{x})(x - \frac{1}{x} - 3) \] ### Final Factorized Form Thus, the final factorized form of the expression is: \[ (x - \frac{1}{x})(x - \frac{1}{x} - 3) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Foctorise : x^(2) - 2x- 9

Foctorise : 50 x ^(2) - 2(x-2)^(2)

Foctorise : (1)/(3) x^(2) - (8)/(x)

Foctorise : x(a- 5)+ y(5-a)

Foctorise : 7sqrt2 x^(2) - 10 x - 4sqrt2

Foctorise : (a^(2) +3a -5) (a^(2) +3a +2) +6.

Evaluate lim_(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

Find the sum of the following algebraic expressions : 3x^(3) - 5x^(2) + 2x + 1 , 3x - 2x^(3) - x^(3) , 2x^(2) - 7x + 9

if (2x - 1)/3 = (x-2)/3 + 1 , then x = ?

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)