Home
Class 9
MATHS
Foctorise : x^(2) - 2x- 9...

Foctorise :
` x^(2) - 2x- 9 `

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 - 2x - 9 \), we will follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ x^2 - 2x - 9 \] ### Step 2: Identify a Perfect Square We notice that the first two terms, \( x^2 - 2x \), can be rearranged to form a perfect square. We can express \( -2x \) as \( -2 \cdot x \cdot 1 \). To complete the square, we take half of the coefficient of \( x \) (which is -2), square it, and add and subtract this value: \[ x^2 - 2x + 1 - 1 - 9 \] This simplifies to: \[ (x - 1)^2 - 10 \] ### Step 3: Recognize the Difference of Squares Now we have: \[ (x - 1)^2 - 10 \] We can recognize this as a difference of squares, where \( a = (x - 1) \) and \( b = \sqrt{10} \): \[ a^2 - b^2 = (a + b)(a - b) \] Thus, we can factor it as: \[ ((x - 1) + \sqrt{10})((x - 1) - \sqrt{10}) \] ### Step 4: Write the Final Factored Form The final factored form of the expression \( x^2 - 2x - 9 \) is: \[ (x - 1 + \sqrt{10})(x - 1 - \sqrt{10}) \] ### Summary The expression \( x^2 - 2x - 9 \) can be factorized as: \[ (x - 1 + \sqrt{10})(x - 1 - \sqrt{10}) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Foctorise : 50 x ^(2) - 2(x-2)^(2)

Foctorise : 7sqrt2 x^(2) - 10 x - 4sqrt2

Foctorise : (1)/(3) x^(2) - (8)/(x)

By foctorising x^(2) - 22x + 117 , evaluate " " ( x^(2) -22x +117)+ (x-13)

Factorise : 49 (x-y)^2 - 9 (2x +y)^2

Foctorise : x(a- 5)+ y(5-a)

Foctorise : x^(2) +(1)/(x^(2)) - 2 -3 x+ (3)/(x)

Foctorise : (a^(2) +3a -5) (a^(2) +3a +2) +6.

Add : 5x^(2) , - 9x^(2)

Factorise the following : (i) 2x^(2)+9x+9 (ii) 2x^(2)+9x-5