Home
Class 9
MATHS
Foctorise : (1)/(3) x^(2) - (8)/(x)...

Foctorise :
` (1)/(3) x^(2) - (8)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(\frac{1}{3} x^2 - \frac{8}{x}\), we will follow these steps: ### Step 1: Rewrite the expression with a common denominator To combine the two terms, we need a common denominator. The common denominator for the terms \(\frac{1}{3} x^2\) and \(-\frac{8}{x}\) is \(3x\). \[ \frac{1}{3} x^2 = \frac{x^3}{3x} \quad \text{and} \quad -\frac{8}{x} = -\frac{24}{3x} \] So, we can rewrite the expression as: \[ \frac{x^3 - 24}{3x} \] ### Step 2: Factor the numerator Now, we need to factor the numerator \(x^3 - 24\). Notice that \(24\) can be expressed as \(2^3 \cdot 3\). Therefore, we can rewrite \(24\) as \(2^3\). Now, we have: \[ x^3 - (2\sqrt[3]{3})^3 \] ### Step 3: Apply the difference of cubes formula We can use the difference of cubes formula, which states that: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] In our case, \(a = x\) and \(b = 2\sqrt[3]{3}\). Applying the formula gives us: \[ x^3 - (2\sqrt[3]{3})^3 = (x - 2\sqrt[3]{3})(x^2 + 2\sqrt[3]{3}x + (2\sqrt[3]{3})^2) \] ### Step 4: Substitute back into the expression Now substituting back into our expression, we have: \[ \frac{(x - 2\sqrt[3]{3})(x^2 + 2\sqrt[3]{3}x + 4\cdot\sqrt[3]{3^2})}{3x} \] ### Final Answer Thus, the factorised form of the expression \(\frac{1}{3} x^2 - \frac{8}{x}\) is: \[ \frac{(x - 2\sqrt[3]{3})(x^2 + 2\sqrt[3]{3}x + 4\cdot\sqrt[3]{3^2})}{3x} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Foctorise : x^(2) +(1)/(x^(2)) - 2 -3 x+ (3)/(x)

Foctorise : 50 x ^(2) - 2(x-2)^(2)

Foctorise : x^(2) - 2x- 9

Foctorise : (a^(2) +3a -5) (a^(2) +3a +2) +6.

Foctorise : x(a- 5)+ y(5-a)

If x^(2) + (1)/(x^(2))= 7 and x ne 0 , find the value of : 7x^(3) + 8x- (7)/(x^(3))- (8)/(x)

Foctorise : 7sqrt2 x^(2) - 10 x - 4sqrt2

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

Solve : 8 ^(x+1) = 16 ^(y+2) and ( (1)/(2)) ^(3+x) = ((1)/(4))^(3y)

Factorize: 8/(27)x^3+1+4/3x^2+2x