Home
Class 9
MATHS
Foctorise : 7sqrt2 x^(2) - 10 x - 4...

Foctorise :
` 7sqrt2 x^(2) - 10 x - 4sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 7\sqrt{2} x^2 - 10x - 4\sqrt{2} \), we will follow these steps: ### Step 1: Identify the coefficients The expression is in the standard quadratic form \( ax^2 + bx + c \), where: - \( a = 7\sqrt{2} \) - \( b = -10 \) - \( c = -4\sqrt{2} \) ### Step 2: Multiply \( a \) and \( c \) We need to multiply \( a \) and \( c \): \[ a \cdot c = 7\sqrt{2} \cdot (-4\sqrt{2}) = -28 \] ### Step 3: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \(-28\) and add to \(-10\). The numbers are \(-14\) and \(4\): \[ -14 + 4 = -10 \quad \text{and} \quad -14 \cdot 4 = -56 \] ### Step 4: Rewrite the middle term We can rewrite the expression by splitting the middle term using the two numbers we found: \[ 7\sqrt{2} x^2 - 14x + 4x - 4\sqrt{2} \] ### Step 5: Group the terms Now, we group the terms: \[ (7\sqrt{2} x^2 - 14x) + (4x - 4\sqrt{2}) \] ### Step 6: Factor out the common terms from each group From the first group \( 7\sqrt{2} x^2 - 14x \), we can factor out \( 7\sqrt{2} x \): \[ 7\sqrt{2} x (x - 2) \] From the second group \( 4x - 4\sqrt{2} \), we can factor out \( 4 \): \[ 4(x - \sqrt{2}) \] ### Step 7: Combine the factored terms Now we can combine the factored terms: \[ 7\sqrt{2} x (x - 2) + 4(x - \sqrt{2}) \] Notice that both groups contain a common factor \( (x - 2) \): \[ (x - 2)(7\sqrt{2} x + 4) \] ### Final Factorized Form Thus, the factorized form of the expression \( 7\sqrt{2} x^2 - 10x - 4\sqrt{2} \) is: \[ (x - \sqrt{2})(7\sqrt{2} x + 4) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Factorise : 7sqrt(2)x^(2) - 10 x - 4sqrt(2)

Foctorise : x^(2) - 2x- 9

Factorise: (i) 4sqrt(3)x^(2) + 5x-2sqrt(3) (ii) 7sqrt(2)x^(2)-10x - 4sqrt(2)

If sqrt2 is a zero of p(x)=6x^3 +sqrt2x^2- 10x -4sqrt2 , find the remaining zeros

Foctorise : 50 x ^(2) - 2(x-2)^(2)

Factorize of the expression: 7sqrt(2)\ x^2-10 x-4sqrt(2)

Foctorise : (1)/(3) x^(2) - (8)/(x)

Factorise sqrt(3)x^(2)+10x+3sqrt(3)

Foctorise : x^(2) +(1)/(x^(2)) - 2 -3 x+ (3)/(x)