Home
Class 9
MATHS
Foctorise : (a^(2) +3a -5) (a^(2) +...

Foctorise :
` (a^(2) +3a -5) (a^(2) +3a +2) +6.`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( (a^2 + 3a - 5)(a^2 + 3a + 2) + 6 \), we can follow these steps: ### Step 1: Substitute for convenience Let \( t = a^2 + 3a \). Then we can rewrite the expression as: \[ (t - 5)(t + 2) + 6 \] ### Step 2: Expand the expression Now, we expand \( (t - 5)(t + 2) \): \[ t^2 + 2t - 5t - 10 + 6 = t^2 - 3t - 4 \] ### Step 3: Factor the quadratic expression Next, we need to factor \( t^2 - 3t - 4 \). We look for two numbers that multiply to \(-4\) and add to \(-3\). These numbers are \(-4\) and \(1\). Thus, we can factor it as: \[ (t - 4)(t + 1) \] ### Step 4: Substitute back for \( t \) Now, we substitute back \( t = a^2 + 3a \): \[ (a^2 + 3a - 4)(a^2 + 3a + 1) \] ### Step 5: Factor the first term further Now, we can factor \( a^2 + 3a - 4 \) further. We need two numbers that multiply to \(-4\) and add to \(3\). These numbers are \(4\) and \(-1\): \[ (a + 4)(a - 1) \] ### Final Expression Thus, the complete factorization of the original expression is: \[ (a + 4)(a - 1)(a^2 + 3a + 1) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Foctorise : x^(2) - 2x- 9

Foctorise : 50 x ^(2) - 2(x-2)^(2)

Foctorise : x(a- 5)+ y(5-a)

Factorise: 5-(3a^(2)-2a)(6-3a^(2)+2a)

Foctorise : (1)/(3) x^(2) - (8)/(x)

Foctorise : x^(2) +(1)/(x^(2)) - 2 -3 x+ (3)/(x)

Foctorise : 7sqrt2 x^(2) - 10 x - 4sqrt2

Divide : 9a^(5) - 6a^(2) by 3a^(2)

Simplify the following : 2x^(2) + 3y^(2) - 5xy +5x^(2) - y^(2) + 6xy - 3x^(2)

By foctorising x^(2) - 22x + 117 , evaluate " " ( x^(2) -22x +117)+ (x-13)