Home
Class 9
MATHS
Foctorise : 50 x ^(2) - 2(x-2)^(2)...

Foctorise :
` 50 x ^(2) - 2(x-2)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
` 8(2x+1) (3x-1)`
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Foctorise : (1)/(3) x^(2) - (8)/(x)

Foctorise : x^(2) - 2x- 9

Foctorise : x(a- 5)+ y(5-a)

Foctorise : x^(2) +(1)/(x^(2)) - 2 -3 x+ (3)/(x)

Foctorise : (a^(2) +3a -5) (a^(2) +3a +2) +6.

Foctorise : 7sqrt2 x^(2) - 10 x - 4sqrt2

A wave pulse on a horizontal string is represented by the function y(x, t) = (5.0)/(1.0 + (x - 2t)^(2)) (CGS units) plot this function at t = 0 , 2.5 and 5.0 s .

The expression x^4+4 can be factorized as (a) (x^2+2x+2)(x^2-2x+2) (b) (x^2+2x+2)(x^2+2x-2) (c) (x^2-2x-2)(x^2-2x+2) (d) (x^2+2)(x^2-2)

The quadratic equation x^(2) + (a^(2) - 2) x - 2a^(2) and x^(2) - 3x + 2 = 0 have

STATEMENT-1 : The agnle between the tangents drawn from the point (6, 8) to the circle x^(2) + y^(2) = 50 is 90^(@) . and STATEMENT-2 : The locus of point of intersection of perpendicular tangents to the circle x^(2) + y^(2) = r^(2) is x^(2) + y^(2) = 2r^(2) .