Home
Class 9
MATHS
By foctorising x^(2) - 22x + 117 , eva...

By foctorising `x^(2) - 22x + 117 ` , evaluate
` " " ( x^(2) -22x +117)+ (x-13) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first factor the quadratic expression \( x^2 - 22x + 117 \) and then evaluate the expression \( (x^2 - 22x + 117) + (x - 13) \). ### Step 1: Factor the quadratic expression We start with the expression: \[ x^2 - 22x + 117 \] We need to find two numbers that multiply to \( 117 \) (the constant term) and add up to \( -22 \) (the coefficient of \( x \)). After checking the factors of \( 117 \), we find: - The factors are \( 1 \times 117 \), \( 3 \times 39 \), \( 9 \times 13 \). Among these, the pair \( 9 \) and \( 13 \) can be used, since: \[ -9 + (-13) = -22 \quad \text{and} \quad -9 \times -13 = 117 \] Thus, we can rewrite the quadratic as: \[ (x - 9)(x - 13) \] ### Step 2: Rewrite the expression Now we can substitute the factorized form back into the expression we need to evaluate: \[ (x^2 - 22x + 117) + (x - 13) = (x - 9)(x - 13) + (x - 13) \] ### Step 3: Factor out the common term Notice that \( (x - 13) \) is a common factor in both terms: \[ = (x - 13)((x - 9) + 1) \] ### Step 4: Simplify the expression inside the parentheses Now simplify the expression inside the parentheses: \[ (x - 9) + 1 = x - 8 \] So, we have: \[ = (x - 13)(x - 8) \] ### Final Result The factorized form of the original expression is: \[ (x - 13)(x - 8) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Foctorise : x^(2) - 2x- 9

Foctorise : 50 x ^(2) - 2(x-2)^(2)

Foctorise : 7sqrt2 x^(2) - 10 x - 4sqrt2

Foctorise : (1)/(3) x^(2) - (8)/(x)

Foctorise : x(a- 5)+ y(5-a)

Foctorise : x^(2) +(1)/(x^(2)) - 2 -3 x+ (3)/(x)

Find the direct common tangents of the circles x^(2) + y^(2) +22x -4y -100 =0 and x^(2) + y^(2) -22x + 4y +100 =0

If sec x + tan x =22/7 , find the value of tanx/2

Find the least value of (6x^(2)-22x+21)/(5x^(2)-18x+17) for real values of x.