Home
Class 9
MATHS
The expression (a-b)^3+\ (b-c)^3+\ (c-a)...

The expression `(a-b)^3+\ (b-c)^3+\ (c-a)^3` can be factorized as
(a)`(a-b)(b-c)(c-a)`
(b) `3(a-b)(b-c)(c-a)`
(c)`-3\ (a-b)(b-c)(c-a)`
(d)`(a+b+c)(a^2+b^2+c^2-a b-b c-c a)`

Text Solution

Verified by Experts

The correct Answer is:
` 3(a-b) (b-c) (c-a) `
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

(a-b)^3 + (b-c)^3 + (c-a)^3=? (a) (a+b+c)(a^2+b^2+c^2-ab-bc-ac) (b) 3(a-b)(b-c)(c-a) (c) (a-b)(b-c)(c-a) (d)none of these

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

Factorise : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)

Factorise : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)

If (a-b),\ (b-c),(c-a) are in G.P. then prove that (a+b+c)^2=3(a b+b c+c a)

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

Prove: |((b+c)^2, a^2, b c) ,((c+a)^2, b^2 ,c a),( (a+b)^2, c^2, a b)|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2) .

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a(a+b+c)

Prove that (a+b+c)^3 - a^3-b^3-c^3 = 3(a+b)(b+c)(c+a).

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)