Home
Class 9
MATHS
Evaluate : and write the answer in fa...

Evaluate : and write the answer in factors form :
` (3a- 2b)^(3) + (2b- 5c)^(3) + (5c- 3a) ^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( (3a - 2b)^3 + (2b - 5c)^3 + (5c - 3a)^3 \) and write the answer in factor form, we can use the identity for the sum of cubes. ### Step-by-Step Solution: 1. **Identify the terms**: We have three terms in the expression: - Let \( x = 3a - 2b \) - Let \( y = 2b - 5c \) - Let \( z = 5c - 3a \) 2. **Check the condition for the identity**: We need to check if \( x + y + z = 0 \): \[ x + y + z = (3a - 2b) + (2b - 5c) + (5c - 3a) \] Simplifying this: \[ = 3a - 2b + 2b - 5c + 5c - 3a \] \[ = (3a - 3a) + (-2b + 2b) + (-5c + 5c) = 0 \] Since \( x + y + z = 0 \), we can apply the identity. 3. **Apply the identity**: The identity states that if \( x + y + z = 0 \), then: \[ x^3 + y^3 + z^3 = 3xyz \] Therefore, we can write: \[ (3a - 2b)^3 + (2b - 5c)^3 + (5c - 3a)^3 = 3(3a - 2b)(2b - 5c)(5c - 3a) \] 4. **Final answer in factor form**: Thus, the expression can be written as: \[ 3(3a - 2b)(2b - 5c)(5c - 3a) \] ### Final Answer: \[ (3a - 2b)^3 + (2b - 5c)^3 + (5c - 3a)^3 = 3(3a - 2b)(2b - 5c)(5c - 3a) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise COMPOUND INTEREST |27 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Express each of the following in factors form, a^(3)(b- c) ^(3) +b^(3) (c-a) ^(3)+ c^(3) (a-b) "^(3)

Factorize: (a-3b)^3+(3b-c)^3+(c-a)^3

Simplify and write in exponential form. a. 3^(a)xx3^(b)xx3^(c ) b. (-5)^(13)xx5^(213)

Find the square of : (vi) 3a - 2b - 5c

If x-3 is a factor of x^2-a x-15 , then a= (a) -2 (b) 5 (c) -5 (d) 3

Factorize : (a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3

Factorize : (a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3

Simplify : (5a + 5b - c)(2b - 3c)

Subtract : 3a-2b +4c from 5a-3b-5c

Find the greatest common factors of the monomials 6x^3a^2b^2c ,\ 8x^2\ a b^3\ c^3