Home
Class 9
MATHS
Solve : {(625^(-(1)/(2))) ^(-(1)/(4))}=...

Solve ` : {(625^(-(1)/(2))) ^(-(1)/(4))}=(0.2)^(4-3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (625^{-\frac{1}{2}})^{-\frac{1}{4}} = (0.2)^{4 - 3x} \), we will follow these steps: ### Step 1: Simplify the Left-Hand Side (LHS) We start with the LHS: \[ (625^{-\frac{1}{2}})^{-\frac{1}{4}} \] Using the property of exponents \((a^m)^n = a^{m \cdot n}\), we can rewrite this as: \[ 625^{(-\frac{1}{2}) \cdot (-\frac{1}{4})} = 625^{\frac{1}{8}} \] ### Step 2: Express 625 as a Power of 5 Next, we express 625 as a power of 5: \[ 625 = 5^4 \] Thus, we can substitute this into our expression: \[ (5^4)^{\frac{1}{8}} = 5^{4 \cdot \frac{1}{8}} = 5^{\frac{4}{8}} = 5^{\frac{1}{2}} \] ### Step 3: Simplify the Right-Hand Side (RHS) Now, we simplify the RHS: \[ (0.2)^{4 - 3x} \] First, we convert 0.2 into a fraction: \[ 0.2 = \frac{2}{10} = \frac{1}{5} \] Now we can express this as: \[ \left(\frac{1}{5}\right)^{4 - 3x} = (5^{-1})^{4 - 3x} \] Using the property of exponents again: \[ 5^{-(4 - 3x)} = 5^{3x - 4} \] ### Step 4: Set the LHS Equal to the RHS Now we have: \[ 5^{\frac{1}{2}} = 5^{3x - 4} \] Since the bases are the same, we can equate the exponents: \[ \frac{1}{2} = 3x - 4 \] ### Step 5: Solve for x To solve for \(x\), we first add 4 to both sides: \[ \frac{1}{2} + 4 = 3x \] Converting 4 to a fraction: \[ \frac{1}{2} + \frac{8}{2} = 3x \implies \frac{9}{2} = 3x \] Now, divide both sides by 3: \[ x = \frac{9}{2} \cdot \frac{1}{3} = \frac{9}{6} = \frac{3}{2} \] ### Final Answer Thus, the solution to the equation is: \[ x = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise LOGRITHMS |8 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise TRIANGLES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

[{(625)^(-1/4)}^(-1/2)]^2

Solve : (x+2)/(6)-((11-x)/(3)-(1)/(4))=(3x-4)/(12)

Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(0) = 27

Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

solve : (3x - 4) /(2) +1 ge (x+1)/(4)

Solve the equations: 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1) .

Solve for x:((x+1)(x-2))/(x-4)=0

Solve for x:2^(x+2) gt (1/4)^(1/x)

Solve for x : (x-1)/(x+2)+(x-3)/(x-4)=(10)/3,\ \ x!=-2,\ 4

Solve : 8 ^(x+1) = 16 ^(y+2) and ( (1)/(2)) ^(3+x) = ((1)/(4))^(3y)