Home
Class 9
MATHS
Evaluate : sqrt(x^(a-b)) xx sqrt( x^(b-...

Evaluate : ` sqrt(x^(a-b)) xx sqrt( x^(b-c)) xx sqrt( x^(c-a))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sqrt{x^{a-b}} \times \sqrt{x^{b-c}} \times \sqrt{x^{c-a}} \), we can follow these steps: ### Step 1: Rewrite the square roots as exponents We know that \( \sqrt{x^m} = x^{m/2} \). Therefore, we can rewrite the expression: \[ \sqrt{x^{a-b}} = x^{(a-b)/2}, \quad \sqrt{x^{b-c}} = x^{(b-c)/2}, \quad \sqrt{x^{c-a}} = x^{(c-a)/2} \] So, the expression becomes: \[ x^{(a-b)/2} \times x^{(b-c)/2} \times x^{(c-a)/2} \] ### Step 2: Combine the exponents Using the property of exponents that states \( x^m \times x^n = x^{m+n} \), we can combine the exponents: \[ x^{(a-b)/2 + (b-c)/2 + (c-a)/2} \] ### Step 3: Simplify the exponent Now, we simplify the exponent: \[ \frac{(a-b) + (b-c) + (c-a)}{2} \] When we expand the numerator: \[ (a - b + b - c + c - a) = 0 \] Thus, we have: \[ \frac{0}{2} = 0 \] ### Step 4: Substitute back into the expression Now substituting back, we get: \[ x^0 \] According to the properties of exponents, any non-zero number raised to the power of 0 is equal to 1: \[ x^0 = 1 \] ### Final Answer: Thus, the value of the expression \( \sqrt{x^{a-b}} \times \sqrt{x^{b-c}} \times \sqrt{x^{c-a}} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise LOGRITHMS |8 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise TRIANGLES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

If a ,\ b ,\ c are positive real numbers, then sqrt(a^(-1)b)\ xx\ sqrt(b^(-1)\ c)\ xx\ sqrt(c^(-1)a) is equal to: (a)\ 1 (b) a b c (c) sqrt(a b c) (d) 1/(a b c)

Evaluate: int1/(sqrt(x+a)+sqrt(x+b))\ dx

Evaluate: intx/(sqrt(x+a)-sqrt(x+b))\ dx

Evaluate: intx/(sqrt(x+a)-sqrt(x+b))\ dx

Evaluate intx/(sqrt(x+a)-sqrt(x+b))dx

Evaluate intdx/sqrt ((x-a)(b-x))

Evaluate : ("lim")_(xvecoo)sqrt(x)(sqrt(x+c)-sqrt(x))

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

Evaluate lim_(xtooo) sqrt(x)(sqrt(x+c)-sqrt(x)).

y=log[sqrt(x-a)+sqrt(x-b)]