Home
Class 9
MATHS
Simplify : : ( ( x+(1)/(y)) ^(a) ( x-...

Simplify :
` : ( ( x+(1)/(y)) ^(a) ( x-(1)/(y))^(b))/((y+(1)/(x))^(a) (y-(1)/(x))^(b)) `

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{(x + \frac{1}{y})^a (x - \frac{1}{y})^b}{(y + \frac{1}{x})^a (y - \frac{1}{x})^b} \] we will follow these steps: ### Step 1: Rewrite the expression Rewrite the expression to make it clearer: \[ \frac{(x + \frac{1}{y})^a (x - \frac{1}{y})^b}{(y + \frac{1}{x})^a (y - \frac{1}{x})^b} \] ### Step 2: Find a common denominator For the terms in the numerator and denominator, we can find a common denominator: The numerator becomes: \[ (xy + 1)^a (xy - 1)^b \] The denominator becomes: \[ (xy + 1)^b (xy - 1)^a \] ### Step 3: Simplify the expression Now we can simplify the expression: \[ \frac{(xy + 1)^a (xy - 1)^b}{(xy + 1)^b (xy - 1)^a} \] This can be simplified to: \[ \frac{(xy + 1)^{a-b} (xy - 1)^{b-a}} \] ### Step 4: Final simplification We can express this as: \[ \frac{(xy + 1)^{a-b}}{(xy - 1)^{a-b}} \] ### Step 5: Final result Thus, the simplified expression is: \[ \left(\frac{xy + 1}{xy - 1}\right)^{a-b} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise LOGRITHMS |8 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise TRIANGLES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

If (a)/(b)=1-(x)/(y) , then (b)/(a)=

When simplified (x^(-1)+y^(-1))^(-1) is equal to (a)\ x y (b) x+y (c) (x y)/(x+y) (d) (x+y)/(x y)

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

Straight lines (x)/(a)+(y)/(b)=1, (x)/(b)+(y)/(a)=1,(x)/(a)+(y)/(b)=2 and (x)/(b)+(y)/(a)=2 form a rhombus of area ( in square units)

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

If y=log_e(x/(a+b x))^x , then x^3y_2 is (a) (x y_1-y)^2 (b) (1+y)^2 (c) ((y-x y_1)/(y_1))^2 (d) none of these

If a, x_1, x_2, …, x_k and b, y_1, y_2, …, y_k from two A. Ps with common differences m and n respectively, the the locus of point (x, y) , where x= (sum_(i=1)^k x_i)/k and y= (sum_(i=1)^k yi)/k is: (A) (x-a) m = (y-b)n (B) (x-m) a= (y-n) b (C) (x-n) a= (y-m) b (D) (x-a) n= (y-b)m

Simplify: (11)/2x^2y-9/4x y^2+1/4x y-1/(14)y^2x+1/(15)y x^2+1/2x y

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

If x=secvarphi-tanvarphia n dy=cos e cvarphi+cotvarphi, then x=(y+1)/(y-1) (b) x=(y-1)/(y+1) y=(1+x)/(1-x) (d) x y+x-y+1=0