Home
Class 9
MATHS
Solve for m : 15^(27) + 15^(2) = 15...

Solve for m :
` 15^(27) + 15^(2) = 15 ^(2) + 15^(5m+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 15^{27} + 15^{2} = 15^{2} + 15^{5m+2} \), we can follow these steps: ### Step 1: Write the given equation We start with the equation: \[ 15^{27} + 15^{2} = 15^{2} + 15^{5m+2} \] ### Step 2: Simplify the equation We can subtract \( 15^{2} \) from both sides of the equation: \[ 15^{27} + 15^{2} - 15^{2} = 15^{2} + 15^{5m+2} - 15^{2} \] This simplifies to: \[ 15^{27} = 15^{5m+2} \] ### Step 3: Compare the exponents Since the bases are the same (both are base 15), we can set the exponents equal to each other: \[ 27 = 5m + 2 \] ### Step 4: Solve for \( m \) Now, we will isolate \( m \): 1. Subtract 2 from both sides: \[ 27 - 2 = 5m \] This gives: \[ 25 = 5m \] 2. Now, divide both sides by 5: \[ m = \frac{25}{5} \] Therefore: \[ m = 5 \] ### Final Answer The value of \( m \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise LOGRITHMS |8 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise TRIANGLES |6 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise SIMULTANEOUS EQUATIONS|10 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos

Similar Questions

Explore conceptually related problems

Solve for x : 2x^(2) + 5 sqrt(5) x - 15=0

Solve for x : 2cos(3x-15^(@))=1

solve the equation for x , 5^(1/2)+5^(1/2 + log_5 sinx) = 15^(1/2 + log_15 cosx)

solve the equation for x , 5^(1/2)+5^(1/2 + log_5 sinx) = 15^(1/2 + log_15 cosx)

Solve : 2x+7=15

Evaluate : 2 sin 15 ^(@) cos 15 ^(@)

Prove that cos 15 ^(@) - sin 15^(@) = (1)/(sqrt2)

Solve 15-2(2x-1) lt 15, x in Z

Solve the equation 15.2^(x+1)+15.2^(2-x)=135

Solve : 3/(15)+7/(15)