Home
Class 9
MATHS
If x ^(2) = 11 + 2 sqrt(30 ) , find :...

If ` x ^(2) = 11 + 2 sqrt(30 ) , ` find :
` x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 = 11 + 2\sqrt{30} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ x^2 = 11 + 2\sqrt{30} \] ### Step 2: Express 11 in a different form We can express 11 as a sum of two squares. We can rewrite it as: \[ 11 = 6 + 5 \] Now we can rewrite the right-hand side: \[ x^2 = (6 + 5) + 2\sqrt{30} \] ### Step 3: Recognize the perfect square Notice that \( 6 = \sqrt{6}^2 \) and \( 5 = \sqrt{5}^2 \). We can now express the right-hand side as: \[ x^2 = \sqrt{6}^2 + \sqrt{5}^2 + 2(\sqrt{5})(\sqrt{6}) \] This is in the form of \( a^2 + b^2 + 2ab \), which can be factored as: \[ x^2 = (\sqrt{6} + \sqrt{5})^2 \] ### Step 4: Take the square root of both sides Now, we can take the square root of both sides: \[ x = \pm (\sqrt{6} + \sqrt{5}) \] ### Final Answer Thus, the value of \( x \) is: \[ x = \sqrt{6} + \sqrt{5} \quad \text{or} \quad x = -(\sqrt{6} + \sqrt{5}) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise FACTORS |9 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

If x ^(2) = 11 + 2 sqrt(30 ) , find : (1)/(x)

if x = 2 - sqrt3 , find x^2 + 1/x^2

If x= 3 + 2 sqrt2 , find x- (1)/(x)

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)

If x = 3 + sqrt7 , find x^2 + 1/x^2

If x=2sqrt(3)+2sqrt(2) , find : (i) 1/x" (ii) "x+1/x" (iii) "(x+1/x)^(2)

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

If x = sqrt(3)- sqrt(2) find the value of x^(2)+ (1)/(x^(2))

If x= 2sqrt(3)+2sqrt(2) find : (1)/(x)

If x= 2sqrt(3)+2sqrt(2) find : x+(1)/(x)