Home
Class 9
MATHS
Express each of the following in factors...

Express each of the following in factors form,
` a^(3)(b- c) ^(3) +b^(3) (c-a) ^(3)+ c^(3) (a-b) "^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression \( a^3(b - c)^3 + b^3(c - a)^3 + c^3(a - b)^3 \) in factor form, we can follow these steps: ### Step 1: Identify the terms We start with the expression: \[ a^3(b - c)^3 + b^3(c - a)^3 + c^3(a - b)^3 \] ### Step 2: Rewrite the expression We can rewrite the expression using the property of cubes: \[ = a(b - c)^3 + b(c - a)^3 + c(a - b)^3 \] ### Step 3: Define new variables Let: \[ x = a(b - c), \quad y = b(c - a), \quad z = c(a - b) \] ### Step 4: Check if \( x + y + z = 0 \) Now, we need to check if \( x + y + z = 0 \): \[ x + y + z = a(b - c) + b(c - a) + c(a - b) \] ### Step 5: Expand and simplify Expanding the expression: \[ = ab - ac + bc - ab + ac - bc \] Here, we can see that all terms cancel out: \[ = 0 \] ### Step 6: Apply the identity Since \( x + y + z = 0 \), we can use the identity: \[ x^3 + y^3 + z^3 = 3xyz \] Thus, we have: \[ a^3(b - c)^3 + b^3(c - a)^3 + c^3(a - b)^3 = 3xyz \] ### Step 7: Substitute back the values of \( x, y, z \) Substituting back: \[ = 3 \cdot a(b - c) \cdot b(c - a) \cdot c(a - b) \] ### Step 8: Factor out common terms We can factor this expression: \[ = 3abc(b - c)(c - a)(a - b) \] ### Final Answer Thus, the expression in factor form is: \[ 3abc(b - c)(c - a)(a - b) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SIMUTANEOUS EQUATIONS |11 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Express each of the following in the form a+i b :(5-3i)^3

Evaluate : and write the answer in factors form : (3a- 2b)^(3) + (2b- 5c)^(3) + (5c- 3a) ^(3)

Factorize each of the following expressions: 16(a-b)^3-24(a-b)^2

Find the values of each of the following expressions for a=1,\ b=2\ a n d\ c=-1. (i) a^3+b^3+c^3-3a b c (ii) a^2+b^2+c^2-a b-b c-c a

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

Express each of the products as a monomials (4/9a b c^3)xx(-(27)/5a^3b^2)xx(-8b^3c)

Factorize each of the following expressions : . (i) (2x-3y)^3+(4z-2x)^3+(3y-4z)^3 , (ii) 2sqrt(2)a^3+16sqrt(2)b^3+c^3-12 a b c

Factorize: (a-3b)^3+(3b-c)^3+(c-a)^3

Prove that : |{:(a,b,c),(b,c,a),(c,a,b):}|=3 a b c-a^(3)-b^(3)-c^(3)

Add the following algebraic expressions : 2a - 3b + 4c , -3a + 2b - 5c , 7a - c and 3b + 6c