Home
Class 9
MATHS
If x ^(2) = 11 + 2 sqrt(30 ) , find :...

If ` x ^(2) = 11 + 2 sqrt(30 ) , ` find :
` (1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{x} \) given that \( x^2 = 11 + 2\sqrt{30} \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ x^2 = 11 + 2\sqrt{30} \] 2. **Express \( x \) in terms of the square root:** \[ x = \sqrt{11 + 2\sqrt{30}} \] 3. **Rewrite \( 11 \) as \( 6 + 5 \) to facilitate the use of the perfect square formula:** \[ x = \sqrt{6 + 5 + 2\sqrt{30}} \] 4. **Recognize that \( \sqrt{30} = \sqrt{6} \cdot \sqrt{5} \) and use the identity \( (a + b)^2 = a^2 + b^2 + 2ab \):** \[ x = \sqrt{(\sqrt{6} + \sqrt{5})^2} \] 5. **Simplify the expression:** \[ x = \sqrt{6} + \sqrt{5} \] 6. **Now, find \( \frac{1}{x} \):** \[ \frac{1}{x} = \frac{1}{\sqrt{6} + \sqrt{5}} \] 7. **Rationalize the denominator:** \[ \frac{1}{x} = \frac{1}{\sqrt{6} + \sqrt{5}} \cdot \frac{\sqrt{6} - \sqrt{5}}{\sqrt{6} - \sqrt{5}} = \frac{\sqrt{6} - \sqrt{5}}{(\sqrt{6})^2 - (\sqrt{5})^2} \] 8. **Calculate the denominator:** \[ (\sqrt{6})^2 - (\sqrt{5})^2 = 6 - 5 = 1 \] 9. **Final expression for \( \frac{1}{x} \):** \[ \frac{1}{x} = \sqrt{6} - \sqrt{5} \] ### Final Answer: \[ \frac{1}{x} = \sqrt{6} - \sqrt{5} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise FACTORS |9 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

If x ^(2) = 11 + 2 sqrt(30 ) , find : x

If x ^(2) = 11 + 2 sqrt(30 ) , find : x + (1)/(x)

If x ^(2) = 11 + 2 sqrt(30 ) , find : x - (1)/(x)

If x= 2sqrt(3)+2sqrt(2) find : (1)/(x)

If x= 2sqrt(3)+2sqrt(2) find : x+(1)/(x)

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)

if x = 2 - sqrt3 , find x^2 + 1/x^2

If x= 3 + 2 sqrt2 , find x- (1)/(x)

If x = sqrt(3)- sqrt(2) find the value of x+(1)/(x)

If x= 2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)