Home
Class 9
MATHS
If x ^(2) = 11 + 2 sqrt(30 ) , find :...

If ` x ^(2) = 11 + 2 sqrt(30 ) , ` find :
` x + (1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 = 11 + 2\sqrt{30} \) and find \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ x^2 = 11 + 2\sqrt{30} \] ### Step 2: Express \( x^2 \) in a different form We can express \( 11 + 2\sqrt{30} \) in a way that resembles a perfect square. Notice that: \[ 11 + 2\sqrt{30} = 6 + 5 + 2\sqrt{5 \cdot 6} \] This can be rewritten as: \[ x^2 = (\sqrt{6} + \sqrt{5})^2 \] ### Step 3: Take the square root Taking the square root of both sides gives us: \[ x = \pm (\sqrt{6} + \sqrt{5}) \] ### Step 4: Find \( x + \frac{1}{x} \) Now, we need to find \( x + \frac{1}{x} \). We can use the positive value of \( x \): \[ x + \frac{1}{x} = \sqrt{6} + \sqrt{5} + \frac{1}{\sqrt{6} + \sqrt{5}} \] ### Step 5: Rationalize \( \frac{1}{\sqrt{6} + \sqrt{5}} \) To simplify \( \frac{1}{\sqrt{6} + \sqrt{5}} \), we multiply the numerator and denominator by \( \sqrt{6} - \sqrt{5} \): \[ \frac{1}{\sqrt{6} + \sqrt{5}} \cdot \frac{\sqrt{6} - \sqrt{5}}{\sqrt{6} - \sqrt{5}} = \frac{\sqrt{6} - \sqrt{5}}{(\sqrt{6})^2 - (\sqrt{5})^2} \] Calculating the denominator: \[ (\sqrt{6})^2 - (\sqrt{5})^2 = 6 - 5 = 1 \] Thus, \[ \frac{1}{\sqrt{6} + \sqrt{5}} = \sqrt{6} - \sqrt{5} \] ### Step 6: Combine the terms Now, we can combine the terms: \[ x + \frac{1}{x} = \sqrt{6} + \sqrt{5} + (\sqrt{6} - \sqrt{5}) = 2\sqrt{6} \] ### Final Answer Thus, the final result is: \[ x + \frac{1}{x} = 2\sqrt{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise FACTORS |9 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

If x ^(2) = 11 + 2 sqrt(30 ) , find : (1)/(x)

if x = 2 - sqrt3 , find x^2 + 1/x^2

If x= 3 + 2 sqrt2 , find (x- (1)/(x))^(3)

If x= 2sqrt(3)+2sqrt(2) find : (1)/(x)

If x= 3 + 2 sqrt2 , find x- (1)/(x)

If x= 2sqrt(3)+2sqrt(2) find : (x+(1)/(x))^(2)

If x = sqrt(3)- sqrt(2) find the value of x+(1)/(x)

If x =1 -sqrt(2) find the value of (x-(1)/(x))^(3)

If x = 3 + sqrt7 , find x^2 + 1/x^2

If x=1-sqrt(2) , find the value of (x-1/x)^3