Home
Class 9
MATHS
Simplify : (x^(4) - 16) / (x^(3) + 2...

Simplify :
` (x^(4) - 16) / (x^(3) + 2x^(2)+ 4x + 8 ) `

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((x^{4} - 16) / (x^{3} + 2x^{2} + 4x + 8)\), we will follow these steps: ### Step 1: Factor the numerator The numerator \(x^{4} - 16\) is a difference of squares. We can use the formula \(a^2 - b^2 = (a - b)(a + b)\). Here, we can rewrite \(x^{4} - 16\) as: \[ x^{4} - 16 = (x^{2})^{2} - (4)^{2} = (x^{2} - 4)(x^{2} + 4) \] ### Step 2: Factor \(x^{2} - 4\) The term \(x^{2} - 4\) is also a difference of squares. We can factor it further: \[ x^{2} - 4 = (x - 2)(x + 2) \] Thus, the numerator can be expressed as: \[ x^{4} - 16 = (x - 2)(x + 2)(x^{2} + 4) \] ### Step 3: Factor the denominator Now, let's look at the denominator \(x^{3} + 2x^{2} + 4x + 8\). We can try to factor it by grouping. Group the terms: \[ (x^{3} + 2x^{2}) + (4x + 8) \] Factoring out common terms from each group: \[ x^{2}(x + 2) + 4(x + 2) \] Now, we can factor out \((x + 2)\): \[ (x + 2)(x^{2} + 4) \] ### Step 4: Rewrite the expression Now we can rewrite the original expression with the factored forms: \[ \frac{(x - 2)(x + 2)(x^{2} + 4)}{(x + 2)(x^{2} + 4)} \] ### Step 5: Cancel common factors We can see that \((x + 2)\) and \((x^{2} + 4)\) are common in both the numerator and the denominator. Thus, we can cancel these terms: \[ \frac{(x - 2) \cancel{(x + 2)} \cancel{(x^{2} + 4)}}{\cancel{(x + 2)} \cancel{(x^{2} + 4)}} \] This simplifies to: \[ x - 2 \] ### Final Answer The simplified expression is: \[ \boxed{x - 2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SIMUTANEOUS EQUATIONS |11 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Simplify : (7x - 8)(3x + 2)

Simplify : (8(3)(x)^(2)(3))/(6x)

Simplify: (5-x)(3-2x)(4-3x)

Evaluate lim_(x to sqrt(2)) (x^(9) - 3x^(8) + x^(6) - 9x^(4) - 4x^(2) - 16x + 84)/(x^(5) - 3x^(4) - 4x + 12)

Simplify: x^3y(x^2-2x)+2x y(x^3-x^4)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Divide : 16 + 8x + x^(6) - 8x^(3) - 2x^(4) + x^(2) by x + 4 - x^(3)

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

Simplify the expression 8(x^(2)-x-1) + 5 (2x-2) - 3 (x^(2) +x - 1)

Simplify: x(x+4)+3x(2x^2-1)+4x^2+4