Home
Class 9
MATHS
Factorise: a^(2) - b^(2) - 4ac + 4c^...

Factorise:
` a^(2) - b^(2) - 4ac + 4c^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( a^2 - b^2 - 4ac + 4c^2 \), we can follow these steps: ### Step 1: Rearrange the Expression We start by rearranging the expression to group the terms in a more manageable way: \[ a^2 - 4ac + 4c^2 - b^2 \] ### Step 2: Recognize a Perfect Square Next, we observe the first three terms \( a^2 - 4ac + 4c^2 \). This can be recognized as a perfect square: \[ a^2 - 4ac + 4c^2 = (a - 2c)^2 \] So we can rewrite the expression as: \[ (a - 2c)^2 - b^2 \] ### Step 3: Apply the Difference of Squares Formula Now we have the expression in the form of a difference of squares, which is \( x^2 - y^2 \). We can use the difference of squares formula: \[ x^2 - y^2 = (x + y)(x - y) \] In our case, let \( x = (a - 2c) \) and \( y = b \). Thus, we can write: \[ (a - 2c)^2 - b^2 = (a - 2c + b)(a - 2c - b) \] ### Step 4: Write the Final Factorized Form Substituting back the values of \( x \) and \( y \), we get the final factorized form: \[ (a - 2c + b)(a - 2c - b) \] ### Final Answer The factorized form of the expression \( a^2 - b^2 - 4ac + 4c^2 \) is: \[ (a - 2c + b)(a - 2c - b) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SIMUTANEOUS EQUATIONS |11 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Factorise : 4a^(2)b - 9b^(3)

Factorise : 4a^(2) - (4b^(2) + 4bc + c^(2))

Factorise: 25a^(2) - 9b^(2) + 12bc - 4c^(2)

Factorise : a^(4) - 7a^(2) + 1

Factorise : 4a^(2) - 49b^(2) + 2a - 7b

Factorise : 5a^(2) - b^(2) - 4ab + 7a - 7b

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : a^(2)-81(b-c)^(2)

Factorise : a^(2) - b^(2) - c^(2) +2bc

Factorise : 8a^(3) - b^(3) - 4ax + 2bx