Home
Class 9
MATHS
Factorise: sqrt5 x^(2) + 2x- 3sqrt5...

Factorise:
` sqrt5 x^(2) + 2x- 3sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( \sqrt{5} x^2 + 2x - 3\sqrt{5} \), we can follow these steps: ### Step 1: Identify coefficients The expression is in the form \( ax^2 + bx + c \), where: - \( a = \sqrt{5} \) - \( b = 2 \) - \( c = -3\sqrt{5} \) ### Step 2: Calculate the product of \( a \) and \( c \) We need to find the product \( ac \): \[ ac = \sqrt{5} \times (-3\sqrt{5}) = -3 \times 5 = -15 \] ### Step 3: Find two numbers that multiply to \( ac \) and add to \( b \) We need to find two numbers that multiply to \(-15\) (the product we calculated) and add up to \(2\) (the coefficient \(b\)). The numbers \(5\) and \(-3\) satisfy this condition: \[ 5 \times (-3) = -15 \quad \text{and} \quad 5 + (-3) = 2 \] ### Step 4: Rewrite the middle term Using the numbers found, we can rewrite the expression: \[ \sqrt{5} x^2 + 5x - 3x - 3\sqrt{5} \] ### Step 5: Group the terms Now, we group the terms: \[ (\sqrt{5} x^2 + 5x) + (-3x - 3\sqrt{5}) \] ### Step 6: Factor out common terms from each group From the first group \( \sqrt{5} x^2 + 5x \), we can factor out \( x \): \[ x(\sqrt{5} x + 5) \] From the second group \(-3x - 3\sqrt{5}\), we can factor out \(-3\): \[ -3(x + \sqrt{5}) \] ### Step 7: Combine the factored terms Now we can combine the factored terms: \[ x(\sqrt{5} x + 5) - 3(x + \sqrt{5}) \] Notice that we can factor out \( (x + \sqrt{5}) \): \[ (x + \sqrt{5})(\sqrt{5} x - 3) \] ### Final Answer Thus, the factorised form of the expression \( \sqrt{5} x^2 + 2x - 3\sqrt{5} \) is: \[ (x + \sqrt{5})(\sqrt{5} x - 3) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SIMUTANEOUS EQUATIONS |11 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Factorise : 7sqrt(2)x^(2) - 10 x - 4sqrt(2)

Factorise : 2sqrt(3)x^(2) + x - 5sqrt(3)

Factorise: (i) 4sqrt(3)x^(2) + 5x-2sqrt(3) (ii) 7sqrt(2)x^(2)-10x - 4sqrt(2)

Factorize: 5\ sqrt(5)\ x^2+20 x+3\ sqrt(5)

The roots of the equation 6 sqrt(5) x^(2) - 9x - 3sqrt(5) = 0 is

Solve: sqrt(5)x^(2) + x + sqrt(5) = 0

Factorise sqrt(3)x^(2)+10x+3sqrt(3)

Factorize: 2x^2+3\ sqrt(5)\ x+5

Solve each of the following equatins : 2sqrt5x^(2)-3x-sqrt5=0

(3+sqrt5)^2 xx (3-sqrt5)^2 = ?