Home
Class 9
MATHS
Factorise: 4(2a - b+c) ^(2) - 9 ( a+...

Factorise:
` 4(2a - b+c) ^(2) - 9 ( a+b- c) ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 4(2a - b + c)^2 - 9(a + b - c)^2 \), we can follow these steps: ### Step 1: Identify the structure Notice that the expression is in the form of \( A^2 - B^2 \), where: - \( A = \sqrt{4}(2a - b + c) = 2(2a - b + c) \) - \( B = \sqrt{9}(a + b - c) = 3(a + b - c) \) ### Step 2: Apply the difference of squares formula Recall the difference of squares formula: \[ A^2 - B^2 = (A + B)(A - B) \] Using this, we can rewrite our expression as: \[ (2(2a - b + c) + 3(a + b - c))(2(2a - b + c) - 3(a + b - c)) \] ### Step 3: Simplify \( A + B \) Now, let's simplify \( A + B \): \[ A + B = 2(2a - b + c) + 3(a + b - c) \] Distributing the terms: \[ = 4a - 2b + 2c + 3a + 3b - 3c \] Combining like terms: \[ = (4a + 3a) + (-2b + 3b) + (2c - 3c) = 7a + b - c \] ### Step 4: Simplify \( A - B \) Next, simplify \( A - B \): \[ A - B = 2(2a - b + c) - 3(a + b - c) \] Distributing the terms: \[ = 4a - 2b + 2c - 3a - 3b + 3c \] Combining like terms: \[ = (4a - 3a) + (-2b - 3b) + (2c + 3c) = a - 5b + 5c \] ### Step 5: Write the final factorized form Now, we can write the complete factorized form: \[ (7a + b - c)(a - 5b + 5c) \] ### Final Answer Thus, the factorized form of the expression \( 4(2a - b + c)^2 - 9(a + b - c)^2 \) is: \[ (7a + b - c)(a - 5b + 5c) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SIMUTANEOUS EQUATIONS |11 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : 4 (2a + b)^2 - (a-b)^2

Factorise : (2a + b)^(2) - 6a - 3b - 4

Factorise : (ii) 25 (a - 5b)^2 - 4 (a - 3b)^2

Factorise : a^4 - (a^2 - 3b^2)^2

Factorise : 5a^(2) - b^(2) - 4ab + 7a - 7b

Factorise : 4a^(2)b - 9b^(3)

Factorise : ab^2 - (a-c) b-c

Factorise a^2 - 2ab + b^2 - c^2

Factorise : a^(2) - b^(2) - c^(2) +2bc