Home
Class 9
MATHS
Factorise: (x-2) (x+2) +3...

Factorise:
` (x-2) (x+2) +3`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( (x-2)(x+2) + 3 \), we will follow these steps: ### Step 1: Recognize the Difference of Squares The expression \( (x-2)(x+2) \) can be recognized as a difference of squares. According to the difference of squares formula, \( a^2 - b^2 = (a-b)(a+b) \). Here, we can let \( a = x \) and \( b = 2 \). ### Step 2: Apply the Difference of Squares Formula Using the formula, we can rewrite \( (x-2)(x+2) \) as: \[ x^2 - 2^2 = x^2 - 4 \] ### Step 3: Substitute Back into the Expression Now, substitute back into the original expression: \[ x^2 - 4 + 3 \] ### Step 4: Simplify the Expression Combine the constant terms: \[ x^2 - 4 + 3 = x^2 - 1 \] ### Step 5: Recognize Another Difference of Squares Now, we see that \( x^2 - 1 \) is also a difference of squares: \[ x^2 - 1^2 = (x-1)(x+1) \] ### Final Answer Thus, the factorised form of the expression \( (x-2)(x+2) + 3 \) is: \[ (x-1)(x+1) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SIMUTANEOUS EQUATIONS |11 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise COMPOUND INTEREST |21 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Factorise : (3x - 2y)^(2) + 3(3x - 2y) - 10

Factorise : 5 + 7x - 6x^(2)

Factorise : 16 x^(2) - 8x - 3

Factorise : x^(2) - x - 72

Factorise : (x^(2) -3x)(x^(2)-3x-1)-20

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : 4x(3x - 2y) - 2y (3x-2y)

Factorise : x^(2) - 25

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

Factorise : 1 - (2x + 3y) - 6 (2x + 3y)^2