Home
Class 9
MATHS
Given 3 (log 5 - log 3 ) - ( log 5 - ...

Given ` 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, ` find m.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 (\log 5 - \log 3) - (\log 5 - 3 \log 6) = 2 - \log m \), we will follow these steps: ### Step 1: Expand the left-hand side We start by distributing the 3 in the first term: \[ 3 (\log 5 - \log 3) = 3 \log 5 - 3 \log 3 \] So, the equation becomes: \[ 3 \log 5 - 3 \log 3 - (\log 5 - 3 \log 6) = 2 - \log m \] ### Step 2: Simplify the left-hand side Now, we can simplify the left-hand side further: \[ 3 \log 5 - 3 \log 3 - \log 5 + 3 \log 6 = 2 - \log m \] Combine like terms: \[ (3 \log 5 - \log 5) + 3 \log 6 - 3 \log 3 = 2 - \log m \] This simplifies to: \[ 2 \log 5 + 3 \log 6 - 3 \log 3 = 2 - \log m \] ### Step 3: Rewrite \( \log 6 \) We can express \( \log 6 \) as \( \log (3 \times 2) \): \[ \log 6 = \log 3 + \log 2 \] Substituting this back into the equation gives: \[ 2 \log 5 + 3 (\log 3 + \log 2) - 3 \log 3 = 2 - \log m \] ### Step 4: Combine the logs Now, we can simplify further: \[ 2 \log 5 + 3 \log 3 + 3 \log 2 - 3 \log 3 = 2 - \log m \] This simplifies to: \[ 2 \log 5 + 3 \log 2 = 2 - \log m \] ### Step 5: Move \( \log m \) to the left side Now, we can move \( \log m \) to the left side: \[ 2 \log 5 + 3 \log 2 + \log m = 2 \] ### Step 6: Combine the logs Using the property \( \log a + \log b = \log(ab) \), we can combine the logs: \[ \log (5^2) + \log (2^3) + \log m = \log (5^2 \cdot 2^3 \cdot m) = 2 \] ### Step 7: Rewrite the equation This gives us: \[ \log (25 \cdot 8 \cdot m) = 2 \] ### Step 8: Exponentiate both sides Taking the antilogarithm of both sides, we have: \[ 25 \cdot 8 \cdot m = 10^2 \] ### Step 9: Solve for \( m \) This simplifies to: \[ 200m = 100 \] Dividing both sides by 200: \[ m = \frac{100}{200} = \frac{1}{2} \] Thus, the value of \( m \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise TRIANGLES |19 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise ISOSCELES TRIANGLES |2 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Find x, if : 2 + log x = log 45 - log 2 + log 16 - 2 log 3.

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

Given log x = 2m - n, log y = n - 2m and log z = 3m - 2n, find in terms of m and n, the value of "log" (x^(2)y^(3))/(z^(4)) .

Find x, if : x - log 48 + 3 log 2 = (1)/(3) log 125 - log 3 .

(i) Show that (log 9)/2 + 2 log 6 +(log 81)/4 - log 12 = 3 log 3 .

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

Express in terms of log 2 and log 3 : (i) log 36 (ii) log 144 (iii) log 4.5 (iv) "log"(26)/(51) - "log" (91)/(119) (v) "log"(75)/(16) - "2 log" (5)/(9) + "log" (32)/(243)

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32