Home
Class 9
MATHS
If 3 log sqrtm + 2 log ""^(3) sqrtn = 1...

If ` 3 log sqrtm + 2 log ""^(3) sqrtn = 1. ` find the value of `m^(9) n^(4)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 \log \sqrt{m} + 2 \log n^{\frac{1}{3}} = 1 \) and find the value of \( m^9 n^4 \), we can follow these steps: ### Step 1: Rewrite the logarithmic expressions Using the property of logarithms that states \( \log a^b = b \log a \), we can rewrite the logarithmic terms: \[ \log \sqrt{m} = \log m^{\frac{1}{2}} = \frac{1}{2} \log m \] \[ \log n^{\frac{1}{3}} = \frac{1}{3} \log n \] Substituting these into the equation gives: \[ 3 \left(\frac{1}{2} \log m\right) + 2 \left(\frac{1}{3} \log n\right) = 1 \] ### Step 2: Simplify the equation Now simplify the equation: \[ \frac{3}{2} \log m + \frac{2}{3} \log n = 1 \] ### Step 3: Eliminate fractions To eliminate the fractions, find a common denominator, which is 6: \[ \frac{3 \cdot 3}{2 \cdot 3} \log m + \frac{2 \cdot 2}{3 \cdot 2} \log n = 1 \] This simplifies to: \[ \frac{9}{6} \log m + \frac{4}{6} \log n = 1 \] Multiplying through by 6 gives: \[ 9 \log m + 4 \log n = 6 \] ### Step 4: Combine the logarithms Using the property \( a \log b + c \log d = \log(b^a \cdot d^c) \), we can combine the logarithms: \[ \log(m^9) + \log(n^4) = 6 \] This can be rewritten as: \[ \log(m^9 n^4) = 6 \] ### Step 5: Exponentiate to solve for \( m^9 n^4 \) To eliminate the logarithm, we exponentiate both sides: \[ m^9 n^4 = 10^6 \] ### Final Answer Thus, the value of \( m^9 n^4 \) is: \[ \boxed{1000000} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise TRIANGLES |19 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise ISOSCELES TRIANGLES |2 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3^(2log_(9)3) .

If (3)/(2) log a + (2)/(3) log b - 1 = 0 , find the value of a^(9).b^(4) .

Find the value of (log)_(2sqrt(3))1728.

Find the value of (log)_(2sqrt(3))1728.

If log 27 = 1.431, find the value of : (i) log 9 (ii) log 300

Find the value of : log _ 3 27

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 12 (ii) log 1.2 (iii) log 3.6 (iv) log 15 (v) log 25 (vi) (2)/(3) log 8

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n