Home
Class 9
MATHS
If a= log 2 0 log 3 , b = log 3 - log 5...

If a= ` log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5` find the value of :
a + b+ c

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a + b + c \) where: - \( a = \log 20 \cdot \log 3 \) - \( b = \log 3 - \log 5 \) - \( c = \log 2.5 \) Let's break it down step by step. ### Step 1: Simplifying \( a \) We know that: \[ a = \log 20 \cdot \log 3 \] We can express \( \log 20 \) as: \[ \log 20 = \log (4 \cdot 5) = \log 4 + \log 5 \] And since \( \log 4 = \log (2^2) = 2 \log 2 \), we have: \[ \log 20 = 2 \log 2 + \log 5 \] Thus, \[ a = (2 \log 2 + \log 5) \cdot \log 3 \] ### Step 2: Simplifying \( b \) Using the properties of logarithms, we can simplify \( b \): \[ b = \log 3 - \log 5 = \log \left( \frac{3}{5} \right) \] ### Step 3: Simplifying \( c \) We can rewrite \( c \): \[ c = \log 2.5 = \log \left( \frac{25}{10} \right) = \log 25 - \log 10 \] Since \( \log 25 = \log (5^2) = 2 \log 5 \) and \( \log 10 = \log (2 \cdot 5) = \log 2 + \log 5 \), we have: \[ c = 2 \log 5 - (\log 2 + \log 5) = 2 \log 5 - \log 2 - \log 5 = \log 5 - \log 2 \] ### Step 4: Combining \( a \), \( b \), and \( c \) Now we can combine all three: \[ a + b + c = (2 \log 2 + \log 5) \cdot \log 3 + \log \left( \frac{3}{5} \right) + (\log 5 - \log 2) \] ### Step 5: Expanding and simplifying Expanding \( a \): \[ = 2 \log 2 \cdot \log 3 + \log 5 \cdot \log 3 + \log 3 - \log 5 + \log 5 - \log 2 \] The \( \log 5 \) terms cancel out: \[ = 2 \log 2 \cdot \log 3 + \log 3 - \log 2 \] ### Step 6: Final simplification Now we can factor out \( \log 3 \): \[ = \log 3 (2 \log 2 + 1) - \log 2 \] This is the final expression for \( a + b + c \). ### Final Answer The value of \( a + b + c \) is: \[ \log 3 (2 \log 2 + 1) - \log 2 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise TRIANGLES |19 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise ISOSCELES TRIANGLES |2 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

Find the value of : log _5 0.2

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

Given 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, find m.

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n

If = log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of 7^(l+ m + n )

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)