Home
Class 9
MATHS
If a= log 2 0 log 3 , b = log 3 - log 5...

If a= ` log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5` find the value of :
` 15^(a+ b+ c) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 15^{(a + b + c)} \) where: - \( a = \log 2 - \log 3 \) - \( b = \log 3 - \log 5 \) - \( c = \log 2.5 \) ### Step 1: Rewrite \( c \) We can rewrite \( c \) using the property of logarithms: \[ c = \log 2.5 = \log \left(\frac{5}{2}\right) = \log 5 - \log 2 \] ### Step 2: Substitute \( a \), \( b \), and \( c \) into the expression Now we can substitute \( a \), \( b \), and \( c \) into the expression \( a + b + c \): \[ a + b + c = (\log 2 - \log 3) + (\log 3 - \log 5) + (\log 5 - \log 2) \] ### Step 3: Combine the logarithmic terms Now we can combine the terms: \[ = \log 2 - \log 3 + \log 3 - \log 5 + \log 5 - \log 2 \] Notice that \( \log 2 \) and \( -\log 2 \) cancel each other, \( \log 3 \) and \( -\log 3 \) cancel each other, and \( \log 5 \) and \( -\log 5 \) cancel each other: \[ = 0 \] ### Step 4: Calculate \( 15^{(a + b + c)} \) Now we substitute back into the expression we need to evaluate: \[ 15^{(a + b + c)} = 15^0 \] Since any number raised to the power of 0 is 1: \[ 15^0 = 1 \] ### Final Answer Thus, the value of \( 15^{(a + b + c)} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise TRIANGLES |19 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise ISOSCELES TRIANGLES |2 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

Given 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, find m.

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If = log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of 7^(l+ m + n )

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If a = "log"2, b = "log" 3, c ="log" 7 " and " 6^(x) = 7^(x+4) then x=

if (a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b then find the value of b

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n