Home
Class 9
MATHS
Solve for x : 3^(log x)-2^(log x) =2^(...

Solve for x :
3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^{(\log x)} - 2^{(\log x)} = 2^{(\log x + 1)} - 3^{(\log x - 1)} \), we can follow these steps: ### Step 1: Substitute \( \log x \) with a variable Let \( t = \log x \). Then, the equation becomes: \[ 3^t - 2^t = 2^{(t + 1)} - 3^{(t - 1)} \] ### Step 2: Simplify the right-hand side We can rewrite \( 2^{(t + 1)} \) and \( 3^{(t - 1)} \): \[ 2^{(t + 1)} = 2^t \cdot 2 \] \[ 3^{(t - 1)} = \frac{3^t}{3} \] Now, substituting these into the equation gives: \[ 3^t - 2^t = 2 \cdot 2^t - \frac{3^t}{3} \] ### Step 3: Rearrange the equation Multiply through by 3 to eliminate the fraction: \[ 3(3^t - 2^t) = 3(2 \cdot 2^t) - 3^t \] This simplifies to: \[ 3^{t + 1} - 3 \cdot 2^t = 6 \cdot 2^t - 3^t \] Now, rearranging gives: \[ 3^{t + 1} + 3^t = 9 \cdot 2^t \] ### Step 4: Factor out common terms Notice that \( 3^t \) can be factored out: \[ 3^t(3 + 1) = 9 \cdot 2^t \] This simplifies to: \[ 4 \cdot 3^t = 9 \cdot 2^t \] ### Step 5: Divide both sides by \( 2^t \) \[ \frac{4 \cdot 3^t}{2^t} = 9 \] This can be rewritten as: \[ 4 \left(\frac{3}{2}\right)^t = 9 \] ### Step 6: Isolate \( \left(\frac{3}{2}\right)^t \) Divide both sides by 4: \[ \left(\frac{3}{2}\right)^t = \frac{9}{4} \] ### Step 7: Take logarithm on both sides Taking logarithm (base 10) gives: \[ t \cdot \log\left(\frac{3}{2}\right) = \log\left(\frac{9}{4}\right) \] ### Step 8: Solve for \( t \) \[ t = \frac{\log\left(\frac{9}{4}\right)}{\log\left(\frac{3}{2}\right)} \] ### Step 9: Substitute back to find \( x \) Since \( t = \log x \), we have: \[ \log x = \frac{\log\left(\frac{9}{4}\right)}{\log\left(\frac{3}{2}\right)} \] Thus: \[ x = 10^{\frac{\log\left(\frac{9}{4}\right)}{\log\left(\frac{3}{2}\right)}} \] ### Step 10: Calculate \( x \) Calculating \( x \): \[ x = \left(\frac{9}{4}\right)^{\frac{1}{\log\left(\frac{3}{2}\right)}} \] This simplifies to: \[ x = 100 \] ### Final Answer: \[ x = 100 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise TRIANGLES |19 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise ISOSCELES TRIANGLES |2 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise INDICES |6 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

Solve for x :(log)_5 120+(x-3)-2.(log)_5(1-5^(x-3))=-(log)_5(0. 2-5^(x-4))dot

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve the equations for x and y:(3x)^(log3)=(4y)^(log 4), 4 ^(log x) = 3 ^(log y) .

Solve for: x :(2x)^((log)_b2)=(3x)^((log)_b3) .

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve for x : log(x - 1) + log(x + 1) = log_(2)1 .

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1