Home
Class 9
MATHS
In Delta ABC , angle C = 90 ^(@) , AB =...

In ` Delta ABC , angle C = 90 ^(@) , AB = 20 and BC = 12 . D ` is a point in side AC such that CD = 9 Taking angle BDC = x, find
` tan x- cos x + 3 sin x .`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript: ### Step 1: Draw Triangle ABC We start by sketching triangle ABC where: - Angle C = 90° - AB = 20 - BC = 12 ### Step 2: Find AC using Pythagorean Theorem Using the Pythagorean theorem in triangle ABC: \[ AB^2 = AC^2 + BC^2 \] \[ 20^2 = AC^2 + 12^2 \] \[ 400 = AC^2 + 144 \] \[ AC^2 = 400 - 144 \] \[ AC^2 = 256 \] \[ AC = \sqrt{256} = 16 \] ### Step 3: Identify Point D on AC Point D is on side AC such that CD = 9. Therefore, we can find AD: \[ AD = AC - CD = 16 - 9 = 7 \] ### Step 4: Find BD using Pythagorean Theorem in Triangle BCD Now, we apply the Pythagorean theorem in triangle BCD: \[ BC^2 + CD^2 = BD^2 \] \[ 12^2 + 9^2 = BD^2 \] \[ 144 + 81 = BD^2 \] \[ BD^2 = 225 \] \[ BD = \sqrt{225} = 15 \] ### Step 5: Calculate Trigonometric Ratios Now we can find the trigonometric ratios for angle \( x \) (angle BDC): 1. **tan x**: \[ \tan x = \frac{BC}{CD} = \frac{12}{9} = \frac{4}{3} \] 2. **cos x**: \[ \cos x = \frac{CD}{BD} = \frac{9}{15} = \frac{3}{5} \] 3. **sin x**: \[ \sin x = \frac{BC}{BD} = \frac{12}{15} = \frac{4}{5} \] ### Step 6: Substitute into the Expression Now we substitute these values into the expression \( \tan x - \cos x + 3 \sin x \): \[ \tan x - \cos x + 3 \sin x = \frac{4}{3} - \frac{3}{5} + 3 \cdot \frac{4}{5} \] Calculating \( 3 \cdot \frac{4}{5} = \frac{12}{5} \): \[ = \frac{4}{3} - \frac{3}{5} + \frac{12}{5} \] Combine the terms: \[ = \frac{4}{3} + \left(\frac{12}{5} - \frac{3}{5}\right) = \frac{4}{3} + \frac{9}{5} \] ### Step 7: Find a Common Denominator To combine \( \frac{4}{3} \) and \( \frac{9}{5} \), we find a common denominator: - The LCM of 3 and 5 is 15. Convert each fraction: \[ \frac{4}{3} = \frac{4 \times 5}{3 \times 5} = \frac{20}{15} \] \[ \frac{9}{5} = \frac{9 \times 3}{5 \times 3} = \frac{27}{15} \] ### Step 8: Combine the Fractions Now we can combine: \[ \frac{20}{15} + \frac{27}{15} = \frac{47}{15} \] ### Final Answer Thus, the value of \( \tan x - \cos x + 3 \sin x \) is: \[ \frac{47}{15} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise CO-ORDINATE GEOMETRY |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise GRAPHICAL SOLUTION|3 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SOLIDS |6 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC , angle C = 90 ^(@) , AB = 20 and BC = 12 . D is a point in side AC such that CD = 9 Taking angle BDC = x, find sin angle ABC

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : sin A

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : tan C .

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : cos A

In Delta ABC , angle A is 120^(@), BC + CA = 20, and AB + BC = 21 Find the length of the side BC

The following figures shows a right - angled triangle ABC with angle B = 90 ^(@) , AB = 15 cm and AC = 25 cm. D is a point in side BC and CD = 7 cm. if De bot AC, find the length of DE.

In Delta ABC , angle B = 90^(@) find the values of : cos A cos C -sin A sin C

In Delta ABC , If angle C = 3 angle A, BC = 27, and AB =48 . Then the value of AC is ______

In Delta ABC , angle B = 90^(@) find the values of : sin A cos C + cos A sin C

In Delta ABC , angle B = 90 ^(@) Evaluate : cosec A cos C - sin A sec C .

ICSE-CHAPTERWISE REVISION (STAGE 3) -TRIGONOMETRY
  1. In Delta ABC , angle C = 90 ^(@) , AB = 20 and BC = 12 . D is a poin...

    Text Solution

    |

  2. In Delta ABC , angle C = 90 ^(@) , AB = 20 and BC = 12 . D is a poin...

    Text Solution

    |

  3. If cos theta= (2sqrt(mn))/(m+n) , find the value of sin theta (gi...

    Text Solution

    |

  4. In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find ...

    Text Solution

    |

  5. In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find ...

    Text Solution

    |

  6. In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find ...

    Text Solution

    |

  7. If A=30 ^(@) then show that sin ( 60 ^(@) +A) - sin (60 ^(@) - A)...

    Text Solution

    |

  8. If A=30 ^(@) then show that sin (A+ 30 ^(@) ) + cos (A+ 60 ^(@)) ...

    Text Solution

    |

  9. If x= 20 ^(@) Evaluate : 12 sin ""(3x)/( 2) cos 3x + 5 tan (2x+...

    Text Solution

    |

  10. If cot 3x= sin 45^(@) cos 45 ^(@) + cos 60 ^(@) , find the value of ...

    Text Solution

    |

  11. If 2 cos ^(2) theta + sin theta - 2=0 and 0^(@) le theta le 90 ^(@) ...

    Text Solution

    |

  12. In Delta ABC , angle B = 90^(@) find the values of : sin A cos...

    Text Solution

    |

  13. In Delta ABC , angle B = 90^(@) find the values of : cos A cos...

    Text Solution

    |

  14. In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Fin...

    Text Solution

    |

  15. In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Fi...

    Text Solution

    |

  16. In Triangle ABC, AD is perpendicular to BC, tan B "" = (3)/(4) tan ...

    Text Solution

    |

  17. A balloon is connected to a meteorological station by a cable of lengt...

    Text Solution

    |

  18. ABCD is an isosceles trapezium with AB parallel to DC, AD = BC = 12 cm...

    Text Solution

    |

  19. ABCD is an isosceles trapezium with AB parallel to DC, AD = BC = 12 cm...

    Text Solution

    |

  20. If A,B,C are angles of a triangle, prove that "tan "(B+C)/(2)="cot"...

    Text Solution

    |