Home
Class 9
MATHS
In an isosceles triangle ABC. AB = BC ...

In an isosceles triangle ABC.
AB = BC = 10 cm and BC = 18 cm .
Find the value of :
` sin ^(2) B + cos ^(2) C `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^2 B + \cos^2 C \) in the isosceles triangle ABC, where \( AB = AC = 10 \, \text{cm} \) and \( BC = 18 \, \text{cm} \). ### Step-by-step Solution: 1. **Identify the triangle and its properties**: Given that \( AB = AC = 10 \, \text{cm} \) and \( BC = 18 \, \text{cm} \), we can label the triangle as follows: - \( AB = AC = 10 \, \text{cm} \) (the equal sides) - \( BC = 18 \, \text{cm} \) (the base) 2. **Determine angles B and C**: Since \( AB = AC \), angles \( B \) and \( C \) are equal. Therefore, \( \angle B = \angle C \). 3. **Use the cosine rule to find cos B**: The cosine rule states: \[ c^2 = a^2 + b^2 - 2ab \cos(C) \] Here, we can set: - \( a = 10 \) (AB) - \( b = 10 \) (AC) - \( c = 18 \) (BC) Plugging in the values: \[ 18^2 = 10^2 + 10^2 - 2 \cdot 10 \cdot 10 \cdot \cos(B) \] \[ 324 = 100 + 100 - 200 \cos(B) \] \[ 324 = 200 - 200 \cos(B) \] Rearranging gives: \[ 200 \cos(B) = 200 - 324 \] \[ 200 \cos(B) = -124 \] \[ \cos(B) = -\frac{124}{200} = -\frac{31}{50} \] 4. **Find sin^2 B**: Using the Pythagorean identity: \[ \sin^2 B + \cos^2 B = 1 \] We can find \( \sin^2 B \): \[ \sin^2 B = 1 - \cos^2 B \] \[ \cos^2 B = \left(-\frac{31}{50}\right)^2 = \frac{961}{2500} \] Thus: \[ \sin^2 B = 1 - \frac{961}{2500} = \frac{2500 - 961}{2500} = \frac{1539}{2500} \] 5. **Find cos^2 C**: Since \( \angle B = \angle C \), we have: \[ \cos C = \cos B = -\frac{31}{50} \] Therefore: \[ \cos^2 C = \left(-\frac{31}{50}\right)^2 = \frac{961}{2500} \] 6. **Calculate \( \sin^2 B + \cos^2 C \)**: Now, we can find: \[ \sin^2 B + \cos^2 C = \frac{1539}{2500} + \frac{961}{2500} = \frac{1539 + 961}{2500} = \frac{2500}{2500} = 1 \] ### Final Answer: \[ \sin^2 B + \cos^2 C = 1 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise CO-ORDINATE GEOMETRY |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise GRAPHICAL SOLUTION|3 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SOLIDS |6 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Find the value of : tan ^(2) C - sec ^(2)B +2

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : sin C

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : cos B

In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos angleABC

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : tan^2B - sec^2 B+2

In the figure, given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find : (i) sin B (ii) tan C (iii) sin^(2)B + cos^(2)B (iv) tan C - cot B

Construct a triangle ABC with AB = 7 cm, BC = 3 cm, and CA = 5 cm.

Delta ABC is right-angled at C. If AC = 5 cm and BC = 12 cm find the length of AB.

AD is altitude of an isosceles triangle ABC in which AB = AC = 30 cm and BC = 36 cm. A point O is marked on AD in such a way that angleBOC=90^(@) . Find the area of quadrilateral ABOC.

Construct an isosceles triangle ABC with AB = AC, base BC = 7 cm and altitude from A = 6.5 cm.

ICSE-CHAPTERWISE REVISION (STAGE 3) -TRIGONOMETRY
  1. In Delta ABC , angle B = 90^(@) find the values of : sin A cos...

    Text Solution

    |

  2. In Delta ABC , angle B = 90^(@) find the values of : cos A cos...

    Text Solution

    |

  3. In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Fin...

    Text Solution

    |

  4. In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Fi...

    Text Solution

    |

  5. In Triangle ABC, AD is perpendicular to BC, tan B "" = (3)/(4) tan ...

    Text Solution

    |

  6. A balloon is connected to a meteorological station by a cable of lengt...

    Text Solution

    |

  7. ABCD is an isosceles trapezium with AB parallel to DC, AD = BC = 12 cm...

    Text Solution

    |

  8. ABCD is an isosceles trapezium with AB parallel to DC, AD = BC = 12 cm...

    Text Solution

    |

  9. If A,B,C are angles of a triangle, prove that "tan "(B+C)/(2)="cot"...

    Text Solution

    |

  10. If A + B = 90 ^(@) , show that : cos A = sqrt(( cos A)/(sin B) -...

    Text Solution

    |

  11. Prove that : tan (55^(@) + x) = cot (35^(@) - x)

    Text Solution

    |

  12. Prove that : sec (70^(@) - 0) = cosec (20^(@) + 0)

    Text Solution

    |

  13. Prove that : Sin( 28 ^(@) +A) = cos ( 62 ^(@) - A)

    Text Solution

    |

  14. Prove that : (sinthetacos(90^0-theta)costheta)/(sin(90^0-theta))+(cost...

    Text Solution

    |

  15. If tan2theta=cot(theta+6^@) , where 2theta and theta+6^@ are acute a...

    Text Solution

    |

  16. If in Delta ABC , angle C = 90 ^(@) , prove that : sqrt((1-sin A)...

    Text Solution

    |

  17. Solve for theta (0^(@) lt theta lt 90 ^(@)) 2 sin ^(2) theta = (...

    Text Solution

    |

  18. Solve for theta ( 0 ^(@) lt theta lt 90^(@)) 2 cos 3 theta= 1

    Text Solution

    |

  19. If cosec theta = sqrt2 , find the value of : (1)/(tan A ) +( sin ...

    Text Solution

    |

  20. If 2 cos theta = sqrt3. prove that : 3 sin theta - 4 sin ^(3) thet...

    Text Solution

    |