Home
Class 9
MATHS
Given A is an acute angle and 13 sin A...

Given A is an acute angle and
13 sin A = 5 , evaluate :
` ( 5 sin A - 2 cos A)/( tan A) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start from the given equation and work through the necessary trigonometric identities and relationships. ### Step 1: Given Information We are given that \( 13 \sin A = 5 \). ### Step 2: Solve for \( \sin A \) To find \( \sin A \), we can rearrange the equation: \[ \sin A = \frac{5}{13} \] ### Step 3: Construct a Right Triangle Since \( \sin A = \frac{\text{opposite}}{\text{hypotenuse}} \), we can visualize a right triangle where: - The opposite side (to angle A) is 5 (let's denote it as \( BC = 5x \)). - The hypotenuse is 13 (denote it as \( AC = 13x \)). ### Step 4: Use Pythagorean Theorem to Find the Adjacent Side Using the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] Substituting the known values: \[ (13x)^2 = AB^2 + (5x)^2 \] \[ 169x^2 = AB^2 + 25x^2 \] Rearranging gives: \[ AB^2 = 169x^2 - 25x^2 = 144x^2 \] Taking the square root: \[ AB = 12x \] ### Step 5: Find \( \cos A \) and \( \tan A \) Now we can find \( \cos A \) and \( \tan A \): - \( \cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AB}{AC} = \frac{12x}{13x} = \frac{12}{13} \) - \( \tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{BC}{AB} = \frac{5x}{12x} = \frac{5}{12} \) ### Step 6: Substitute Values into the Expression We need to evaluate: \[ \frac{5 \sin A - 2 \cos A}{\tan A} \] Substituting the values we found: \[ = \frac{5 \left(\frac{5}{13}\right) - 2 \left(\frac{12}{13}\right)}{\frac{5}{12}} \] Calculating the numerator: \[ = \frac{\frac{25}{13} - \frac{24}{13}}{\frac{5}{12}} = \frac{\frac{1}{13}}{\frac{5}{12}} \] ### Step 7: Simplify the Expression To simplify: \[ = \frac{1}{13} \cdot \frac{12}{5} = \frac{12}{65} \] ### Final Answer Thus, the value of the expression is: \[ \frac{12}{65} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise CO-ORDINATE GEOMETRY |6 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise GRAPHICAL SOLUTION|3 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise SOLIDS |6 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Graphical solution |10 Videos
  • CIRCLE

    ICSE|Exercise EXERCISE 17(D)|12 Videos

Similar Questions

Explore conceptually related problems

Given that sin A = 3/5 and that A is an acute anlge, find without using talbes, the values of sin 2 A , cos 2 A and tan 2A. Hence find the value of sin 4A.

If 6 tan A - 5 =0 , find the value of : " " (3 sin A - cos A)/( 5 cos A + 9 sin A)

If tan A=5/12, find the value of (sin A+cos A) sec A

Given : cos A = (5)/(13) Evaluate : (i) (sin A - cot A)/(2 tan A) (ii) cot A + (1)/(cos A)

Given 13 sin A = 12 , find : sec A - tan A

Find acute angles A and B when 2 sin (A+ B) = sqrt3 and 2 cos (A-B) = sqrt3

If A is in the fourth quadrant and cos A=(5)/(13) , find the value of (13 sin A+5 secA)/(5tanA+6" cosec"A) .

If sin A= cos A, then evaluate tan A+ sin^(2) A+1 .

If 4cos^(2)x=3 and x is an acute angle, find the value of : sin2x

If 4cos^(2)x=3 and x is an acute angle, find the value of : sin2x

ICSE-CHAPTERWISE REVISION (STAGE 3) -TRIGONOMETRY
  1. A balloon is connected to a meteorological station by a cable of lengt...

    Text Solution

    |

  2. ABCD is an isosceles trapezium with AB parallel to DC, AD = BC = 12 cm...

    Text Solution

    |

  3. ABCD is an isosceles trapezium with AB parallel to DC, AD = BC = 12 cm...

    Text Solution

    |

  4. If A,B,C are angles of a triangle, prove that "tan "(B+C)/(2)="cot"...

    Text Solution

    |

  5. If A + B = 90 ^(@) , show that : cos A = sqrt(( cos A)/(sin B) -...

    Text Solution

    |

  6. Prove that : tan (55^(@) + x) = cot (35^(@) - x)

    Text Solution

    |

  7. Prove that : sec (70^(@) - 0) = cosec (20^(@) + 0)

    Text Solution

    |

  8. Prove that : Sin( 28 ^(@) +A) = cos ( 62 ^(@) - A)

    Text Solution

    |

  9. Prove that : (sinthetacos(90^0-theta)costheta)/(sin(90^0-theta))+(cost...

    Text Solution

    |

  10. If tan2theta=cot(theta+6^@) , where 2theta and theta+6^@ are acute a...

    Text Solution

    |

  11. If in Delta ABC , angle C = 90 ^(@) , prove that : sqrt((1-sin A)...

    Text Solution

    |

  12. Solve for theta (0^(@) lt theta lt 90 ^(@)) 2 sin ^(2) theta = (...

    Text Solution

    |

  13. Solve for theta ( 0 ^(@) lt theta lt 90^(@)) 2 cos 3 theta= 1

    Text Solution

    |

  14. If cosec theta = sqrt2 , find the value of : (1)/(tan A ) +( sin ...

    Text Solution

    |

  15. If 2 cos theta = sqrt3. prove that : 3 sin theta - 4 sin ^(3) thet...

    Text Solution

    |

  16. Given A is an acute angle and 13 sin A = 5 , evaluate : ( 5 sin A...

    Text Solution

    |

  17. Prove that cos 30 ^(@) = (sqrt3)/(2)

    Text Solution

    |

  18. If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 si...

    Text Solution

    |

  19. IF cos B = (3)/(sqrt(13)) and A + B = 90 ^(@) find the value of s...

    Text Solution

    |

  20. Two opposite angles of a rhombus are 60° each. If the length of each s...

    Text Solution

    |