Home
Class 8
MATHS
In each polynomial, given below, separat...

In each polynomial, given below, separate the like terms :
`y^(2)z^(3), xy^(2)z^(3), -5x^(2)yz, -4y^(2)z^(3), -8xz^(3)y^(2), 3x^(2)yz` and `2z^(3)y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To separate the like terms in the given polynomial expressions, we will follow these steps: ### Step 1: Identify the Terms The given polynomial terms are: 1. \( y^2 z^3 \) 2. \( xy^2 z^3 \) 3. \( -5x^2 yz \) 4. \( -4y^2 z^3 \) 5. \( -8xz^3y^2 \) 6. \( 3x^2 yz \) 7. \( 2z^3y^2 \) ### Step 2: Group the Like Terms Like terms are terms that have the same variables raised to the same powers. We will group them based on their variable composition. #### Group 1: Terms with \( y^2 z^3 \) - \( y^2 z^3 \) - \( -4y^2 z^3 \) - \( 2z^3y^2 \) These terms can be grouped together because they all contain \( y^2 \) and \( z^3 \). #### Group 2: Terms with \( xy^2 z^3 \) - \( xy^2 z^3 \) - \( -8xz^3y^2 \) These terms can be grouped together because they both contain \( x \), \( y^2 \), and \( z^3 \). #### Group 3: Terms with \( x^2 yz \) - \( -5x^2 yz \) - \( 3x^2 yz \) These terms can be grouped together because they both contain \( x^2 \), \( y \), and \( z \). ### Step 3: Write the Grouped Like Terms Now we can write the like terms together: 1. For \( y^2 z^3 \): \( y^2 z^3, -4y^2 z^3, 2z^3y^2 \) 2. For \( xy^2 z^3 \): \( xy^2 z^3, -8xz^3y^2 \) 3. For \( x^2 yz \): \( -5x^2 yz, 3x^2 yz \) ### Final Grouping of Like Terms - **Group 1**: \( y^2 z^3, -4y^2 z^3, 2z^3y^2 \) - **Group 2**: \( xy^2 z^3, -8xz^3y^2 \) - **Group 3**: \( -5x^2 yz, 3x^2 yz \) ### Summary of Like Terms 1. \( y^2 z^3, -4y^2 z^3, 2z^3y^2 \) 2. \( xy^2 z^3, -8xz^3y^2 \) 3. \( -5x^2 yz, 3x^2 yz \) ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

Simplify (4x^(2)y^(2)z - 6xy^(3)z +10 x^(3)yz^(2)) div (-2xyz)

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

Simplify: 2-3z^(2)+5yz+7y^(2)-8+z^(2)-6yz-9y^(2)+1-2z^(2)-2yz-y^(2)

Verify that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Subtract 3x^(3) - 5x^(2) - 9x + 6 " from " 2x^(3) + 3y^(2) - 4z^(2) and x^(2) - 2y^(2) +z^(2)

Divide the given polynomial by the given monomial. (i) (5x^2 - 6x) -: 3x (ii) (3y^8-4y^6+5y^4)divy^4 (iii) 8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) -: 4x^2y^2z^2 (iv) (x^3+2x^2+3x)div2x (v) (p^3q^6 - p^6q^3) -: p^3q^3

Identify the like terms in each of the following: (i) x^2,\ y^2,2x^2, z^2 (ii) 2x y ,\ y z ,\ 3x ,(y z)/2

ICSE-ALGEBRAIC EXPRESSIONS -Exercise 11 (A)
  1. Write the degree of each polynomials given below : xy + yz^(2) - zx^...

    Text Solution

    |

  2. Write the degree of each polynomials given below : x^(5)y^(7) - 8x^...

    Text Solution

    |

  3. Write the coefficient of : ab in 7abx

    Text Solution

    |

  4. Write the coefficient of : 7a in 7abx

    Text Solution

    |

  5. Write the coefficient of : 5x^(2) in 5x^(2) - 5x

    Text Solution

    |

  6. Write the coefficient of : 8 in a^(2) - 8ax + a

    Text Solution

    |

  7. Write the coefficient of : 4xy in x^(2) - 4xy + y^(2)

    Text Solution

    |

  8. In (5)/(7)xy^(2)z^(3), write the coefficient of : 5

    Text Solution

    |

  9. In (5)/(7)xy^(2)z^(3), write the coefficient of : (5)/(7)

    Text Solution

    |

  10. In (5)/(7)xy^(2)z^(3), write the coefficient of : 5x

    Text Solution

    |

  11. In (5)/(7)xy^(2)z^(3), write the coefficient of : xy^(2)

    Text Solution

    |

  12. In (5)/(7)xy^(2)z^(3), write the coefficient of : z^(3)

    Text Solution

    |

  13. In (5)/(7)xy^(2)z^(3), write the coefficient of : xz^(3)

    Text Solution

    |

  14. In (5)/(7)xy^(2)z^(3), write the coefficient of : 5xy^(2)

    Text Solution

    |

  15. In (5)/(7)xy^(2)z^(3), write the coefficient of : (1)/(7)yz

    Text Solution

    |

  16. In (5)/(7)xy^(2)z^(3), write the coefficient of : z

    Text Solution

    |

  17. In (5)/(7)xy^(2)z^(3), write the coefficient of : yz^(2)

    Text Solution

    |

  18. In (5)/(7)xy^(2)z^(3), write the coefficient of : 5xyz

    Text Solution

    |

  19. In each polynomial, given below, separate the like terms : 3xy - 4yx...

    Text Solution

    |

  20. In each polynomial, given below, separate the like terms : y^(2)z^(3...

    Text Solution

    |