Home
Class 8
MATHS
Simplify : a^(2) - 2a + {5a^(2) - 3a -...

Simplify :
`a^(2) - 2a + {5a^(2) - 3a - 4a^(2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( a^2 - 2a + (5a^2 - 3a - 4a^2) \), we can follow these steps: ### Step 1: Open the brackets The expression can be rewritten by removing the brackets: \[ a^2 - 2a + 5a^2 - 3a - 4a^2 \] ### Step 2: Combine like terms Now, we will combine the like terms. The like terms here are the \( a^2 \) terms and the \( a \) terms: - Combine \( a^2 \), \( 5a^2 \), and \( -4a^2 \): \[ a^2 + 5a^2 - 4a^2 = (1 + 5 - 4)a^2 = 2a^2 \] - Combine \( -2a \) and \( -3a \): \[ -2a - 3a = -5a \] ### Step 3: Write the simplified expression Putting it all together, we have: \[ 2a^2 - 5a \] ### Step 4: Factor the expression (if needed) We can factor out the common term \( a \): \[ a(2a - 5) \] Thus, the simplified expression is: \[ a(2a - 5) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : (8) 1/4 - (2) 5/6

Simplify : a^(5) div a^(3) + 3a xx 2a

Simplify: (4-y)-2(2y - 3)

Simplify : 2/3 (2a-3b) -3/4 (2a +5/3 b)

Simplify : 6a^(2)+3ab+5b^(2)-2ab-b^(2)+2a^(2)+4ab+2b^(2)-a^(2) .

Simplify: 8 1/4-\ 2 5/6

Simplify: i+ 2i^(2) + 3i^(3) + i^(4)

Simplify: a^2b(a-b^2)+a b^2(4a b-2a^2)-a^3b(1-2b)

Simplify: i ^2+i ^3+i ^4+i ^5

Simplify : (4xx10^(-2))-(2.5xx10^(-3))