Home
Class 8
MATHS
Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(...

Evaluate :
`3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)`

A

`4x^(2) + 3xy - 9y^(2)`

B

`4x^(2) - 3xy - 9y^(2)`

C

`4x^(2) - 3xy + 9y^(2)`

D

`4x^(2) + 3xy + 9y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(3x^{2} + 5xy - 4y^{2} + x^{2} - 8xy - 5y^{2}\), we will follow these steps: ### Step 1: Write down the expression We start with the expression: \[ 3x^{2} + 5xy - 4y^{2} + x^{2} - 8xy - 5y^{2} \] ### Step 2: Group the like terms Next, we identify and group the like terms in the expression. The like terms are: - \(x^{2}\) terms: \(3x^{2}\) and \(x^{2}\) - \(xy\) terms: \(5xy\) and \(-8xy\) - \(y^{2}\) terms: \(-4y^{2}\) and \(-5y^{2}\) So we can rewrite the expression as: \[ (3x^{2} + x^{2}) + (5xy - 8xy) + (-4y^{2} - 5y^{2}) \] ### Step 3: Combine the like terms Now we will combine the like terms: 1. For \(x^{2}\) terms: \[ 3x^{2} + x^{2} = 4x^{2} \] 2. For \(xy\) terms: \[ 5xy - 8xy = -3xy \] 3. For \(y^{2}\) terms: \[ -4y^{2} - 5y^{2} = -9y^{2} \] ### Step 4: Write the final expression Now we can write the final simplified expression by combining all the results: \[ 4x^{2} - 3xy - 9y^{2} \] ### Final Answer: The evaluated expression is: \[ 4x^{2} - 3xy - 9y^{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (A)|30 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(2) + 5xy + 4y^(2)

Subtract : 2x^(2) + 3xy - 4y^(2) " from " 4x^(2) - xy +3y^(2)

The adjacent sides of a rectangle are 3x^(2) - 2xy + 5y^(2) and 2x^(2) + 5xy - 3y^(2) . Find the area of the rectangle.

Subtract using horizontal method : 5x^(2) + 7xy - 2y^(2) " from " 3x^(2) + 5xy + 2y^(2)

Subtract : 5x^(2)-3xy -7y^(2) from 3x^(2)-xy-2y^(2)

How much more than 2x^(2) + 4xy + 2y^(2) is 5x^(2) + 10xy - y^(2) ?

Subtract : 7xy + 5x^(2) - 7y^(2) + 3 " from " 7x^(2) - 8xy + 3y^(2) - 5

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y

Simplify the following : 2x^(2) + 3y^(2) - 5xy +5x^(2) - y^(2) + 6xy - 3x^(2)

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)