Home
Class 8
MATHS
Divide : -70a^(3) by 14a^(2)...

Divide :
`-70a^(3)` by `14a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To divide \(-70a^{3}\) by \(14a^{2}\), we can follow these steps: ### Step 1: Write the expression We need to divide \(-70a^{3}\) by \(14a^{2}\): \[ \frac{-70a^{3}}{14a^{2}} \] ### Step 2: Separate the constants and variables We can separate the constants and the variable parts: \[ \frac{-70}{14} \cdot \frac{a^{3}}{a^{2}} \] ### Step 3: Divide the constants Now, we divide the constants: \[ \frac{-70}{14} = -5 \] ### Step 4: Divide the variables Next, we divide the variable parts. When dividing like bases, we subtract the exponents: \[ \frac{a^{3}}{a^{2}} = a^{3-2} = a^{1} = a \] ### Step 5: Combine the results Now we combine the results from the constants and the variables: \[ -5 \cdot a = -5a \] ### Final Answer Thus, the result of dividing \(-70a^{3}\) by \(14a^{2}\) is: \[ -5a \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide : -50a^(2)b^(3) by - 15a^(4)b^(2)

Divide : 9a^(5) - 6a^(2) by 3a^(2)

Divide : 24x^(3)y^(3) by -8y^(2)

Divide : -24x^(4)d by -2x^(2)d^ (3)

Divide : 18a^(3)b^(2) - 27 a^(2)b^(3) +9ab^(2) by 3ab

Divide 9a^(2) by 3

Divide 8x^(3) by 2x^(2)

Divide : -14x^(6)y^(3) - 21x^(4)y^(5) + 7x^(5)y^(4) by 7x^(2)y^(2)

Divide -54x^(3)y^(2) by 9x^(2)y

Divide: -4a^3+4a^2+a\ \ by 2a