Home
Class 8
MATHS
Divide : 24x^(3)y^(3) by -8y^(2)...

Divide :
`24x^(3)y^(3)` by `-8y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To divide the expression \( 24x^3y^3 \) by \( -8y^2 \), we can follow these steps: ### Step 1: Write the division as a fraction We can express the division as: \[ \frac{24x^3y^3}{-8y^2} \] ### Step 2: Separate the constants and variables We can separate the constants from the variables: \[ \frac{24}{-8} \cdot \frac{x^3}{1} \cdot \frac{y^3}{y^2} \] ### Step 3: Divide the constants Now, divide the constants: \[ \frac{24}{-8} = -3 \] So, we have: \[ -3 \cdot \frac{x^3}{1} \cdot \frac{y^3}{y^2} \] ### Step 4: Simplify the variable part Next, we simplify the variable part. Since \( y^3 \) divided by \( y^2 \) can be simplified by subtracting the exponents (because the bases are the same): \[ \frac{y^3}{y^2} = y^{3-2} = y^1 = y \] Thus, we have: \[ -3x^3y \] ### Step 5: Write the final answer The final answer after performing the division is: \[ -3x^3y \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide 30x^(2)y^(3)z by -3xyz

Divide -54x^(3)y^(2) by 9x^(2)y

Divide : -24x^(4)d by -2x^(2)d^ (3)

Divide 14x^(3)y^(2) + 8x^(2)y^(3) - 22xy^(4) " by " -2xy^(2)

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Divide : 8x^(2) - 45y^(2) + 18xy by 2x - 3y.

Divide: 25 x^3y^2\ by -15 x^2y (ii) -72 x^2y z\ by -12 x y z

Divide 44(x^4-5x^3-24x^2) by 11x(x-8)

Divide 12 x^3y^3b y\ 3x^2y (ii) -15 a^2b c^3\ b y\ \ 3a b

Factorise : 9x^(2) + 3x - 8y - 64y^(2)