Home
Class 8
MATHS
Divide : 15a^(4)b by -5a^(3)b...

Divide :
`15a^(4)b` by `-5a^(3)b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing \( 15a^4b \) by \( -5a^3b \), we can follow these steps: ### Step 1: Write the division as a fraction We start by expressing the division as a fraction: \[ \frac{15a^4b}{-5a^3b} \] ### Step 2: Separate the constant and variable terms We can separate the constant terms and the variable terms: \[ \frac{15}{-5} \cdot \frac{a^4}{a^3} \cdot \frac{b}{b} \] ### Step 3: Simplify the constant terms Now, simplify the constant term: \[ \frac{15}{-5} = -3 \] ### Step 4: Simplify the variable terms Next, we simplify the variable terms. For \( a^4 \) and \( a^3 \): \[ \frac{a^4}{a^3} = a^{4-3} = a^1 = a \] And for \( b \) in the numerator and denominator: \[ \frac{b}{b} = 1 \quad (\text{since } b \neq 0) \] ### Step 5: Combine the results Putting it all together, we have: \[ -3 \cdot a \cdot 1 = -3a \] ### Final Answer Thus, the result of dividing \( 15a^4b \) by \( -5a^3b \) is: \[ \boxed{-3a} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide : -50a^(2)b^(3) by - 15a^(4)b^(2)

Divide : 15a^(3)b^(4) - 10a^(4)b^(3) - 25a^(3)b^(6) by -5a^(3)b^(2)

Divide : 63a^(4)b^(5)c^(6) by -9a^(2)b^(4)c^(3)

Divide : ( 20a^(2) - 15 ab + 45a ) by (5a)

Divide : 4a^(2) + 12ab + 9b^(2) - 25c^(2) by 2a + 3b + 5c

Divide (a^(4) - b^(4)) by a - b and find the quotient and remainder .

Divide : (-3)/4b y-6 (ii) 2/3b y(-7)/(12) -4\ b y(-3)/5 (iv) (-3)/(13)b y(-4)/(65)

Divide : (i) 1\ b y1/2 (ii) 5\ b y(-5)/7 (iii) (-3)/4b y9/(-16)

Divide: (i) 7/(-4)\ b y(63)/(64) (ii) 0\ b y\ (-7)/5

Divide : (i) 3/5b y4/(25) (ii) (-8)/9b y4/3