Home
Class 8
MATHS
Divide : 63a^(4)b^(5)c^(6) by -9a^(2)b...

Divide :
`63a^(4)b^(5)c^(6)` by `-9a^(2)b^(4)c^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To divide the expression \( 63a^4b^5c^6 \) by \( -9a^2b^4c^3 \), we can follow these steps: ### Step 1: Separate the constants and variables We can write the division as: \[ \frac{63a^4b^5c^6}{-9a^2b^4c^3} = \frac{63}{-9} \cdot \frac{a^4}{a^2} \cdot \frac{b^5}{b^4} \cdot \frac{c^6}{c^3} \] ### Step 2: Divide the constants Now, we divide the constants: \[ \frac{63}{-9} = -7 \] ### Step 3: Divide the variables with the same base Next, we divide the variables: - For \( a \): \[ \frac{a^4}{a^2} = a^{4-2} = a^2 \] - For \( b \): \[ \frac{b^5}{b^4} = b^{5-4} = b^1 = b \] - For \( c \): \[ \frac{c^6}{c^3} = c^{6-3} = c^3 \] ### Step 4: Combine the results Now, we can combine all the results together: \[ -7 \cdot a^2 \cdot b \cdot c^3 = -7a^2bc^3 \] ### Final Answer Thus, the result of dividing \( 63a^4b^5c^6 \) by \( -9a^2b^4c^3 \) is: \[ -7a^2bc^3 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide : 15a^(3)b^(4) - 10a^(4)b^(3) - 25a^(3)b^(6) by -5a^(3)b^(2)

Divide : 4a^(2) + 12ab + 9b^(2) - 25c^(2) by 2a + 3b + 5c

Divide : (i) 3/5b y4/(25) (ii) (-8)/9b y4/3

When a=3 , b=0 , c=-2 , find the value of : 1/2a^4 + 2/3b^2c^2 - 1/9a^2c^2 +c^3 .

Divide: (i) 3/5\ b y4/(25) (ii) 8/9\ b y4/3

The coordinates of the point P dividing the line segment joining the points A(1,\ 3) and B(4,\ 6) in the ratio 2\ :1 are (2,\ 4) (b) (3,\ 5) (c) (4,\ 2) (d) (5,\ 3)

Find the product (2a-3b-2c)(4a^(2)+9b^(2)+4c^(2)+6ab-6bc+4ca) .

The remainder when 27^(10)+7^(51) is divided by 10 (a) 4 (b) 6 (c) 9 (d) 2

If a/b=4/3, then the value of (6a+4b)/(6a-5b) is (a) -1 (b) 3 (c) 4 (d) 5

If a+b+c=0 and a^2+b^2+c^2=1, then (a) a b+b c+c a=1/2 (b) a b+b c+c a=-1/2 (c) a^4+b^4+c^4=1/2 (d) a^4+b^4+c^4=3/2