Home
Class 8
MATHS
Divide : 15a^(3)b^(4) - 10a^(4)b^(3) -...

Divide :
`15a^(3)b^(4) - 10a^(4)b^(3) - 25a^(3)b^(6)` by `-5a^(3)b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To divide the expression \( 15a^{3}b^{4} - 10a^{4}b^{3} - 25a^{3}b^{6} \) by \( -5a^{3}b^{2} \), we will follow these steps: ### Step 1: Write the expression We need to divide the polynomial \( 15a^{3}b^{4} - 10a^{4}b^{3} - 25a^{3}b^{6} \) by \( -5a^{3}b^{2} \). ### Step 2: Separate the terms We can separate the division into individual terms: \[ \frac{15a^{3}b^{4}}{-5a^{3}b^{2}} - \frac{10a^{4}b^{3}}{-5a^{3}b^{2}} - \frac{25a^{3}b^{6}}{-5a^{3}b^{2}} \] ### Step 3: Simplify each term Now, we will simplify each term separately. 1. **First Term**: \[ \frac{15a^{3}b^{4}}{-5a^{3}b^{2}} = \frac{15}{-5} \cdot \frac{a^{3}}{a^{3}} \cdot \frac{b^{4}}{b^{2}} = -3 \cdot 1 \cdot b^{2} = -3b^{2} \] 2. **Second Term**: \[ \frac{10a^{4}b^{3}}{-5a^{3}b^{2}} = \frac{10}{-5} \cdot \frac{a^{4}}{a^{3}} \cdot \frac{b^{3}}{b^{2}} = -2 \cdot a^{1} \cdot b^{1} = -2ab \] 3. **Third Term**: \[ \frac{25a^{3}b^{6}}{-5a^{3}b^{2}} = \frac{25}{-5} \cdot \frac{a^{3}}{a^{3}} \cdot \frac{b^{6}}{b^{2}} = -5 \cdot 1 \cdot b^{4} = -5b^{4} \] ### Step 4: Combine the results Now, we combine the simplified terms: \[ -3b^{2} + 2ab + 5b^{4} \] ### Final Answer Thus, the final result of the division is: \[ 5b^{4} - 2ab - 3b^{2} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide : -50a^(2)b^(3) by - 15a^(4)b^(2)

Divide : 15a^(4)b by -5a^(3)b

Divide : 63a^(4)b^(5)c^(6) by -9a^(2)b^(4)c^(3)

Divide : 4a^(2) + 12ab + 9b^(2) - 25c^(2) by 2a + 3b + 5c

Multiply 6a^(2)b^(3) and -4a^(3)b^(4) .

|A-B| ne 0 , A^(4)=B^(4) , C^(3)A=C^(3)B , B^(3)A=A^(3)B , then |A^(3)+B^(3)+C^(3)|=

Divide: a^(12)+a^6b^6+6^(12)\ \ b y\ \ a^6-a^3b^3+b^6

Divide : (-3)/4b y-6 (ii) 2/3b y(-7)/(12) -4\ b y(-3)/5 (iv) (-3)/(13)b y(-4)/(65)

Divide : (i) 3/5b y4/(25) (ii) (-8)/9b y4/3

Simplify and write in exponential form : a. [(2^(3))^(3)xx4^(5)]-:5^(5) b. (10xx4^(4)xx3^(3))/(6^(3)xx2^(5)xx15)