Home
Class 8
MATHS
Divide : -14x^(6)y^(3) - 21x^(4)y^(5) ...

Divide :
`-14x^(6)y^(3) - 21x^(4)y^(5) + 7x^(5)y^(4)` by `7x^(2)y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing the expression \(-14x^6y^3 - 21x^4y^5 + 7x^5y^4\) by \(7x^2y^2\), we can follow these steps: ### Step 1: Write the expression to be divided We start with the expression: \[ -14x^6y^3 - 21x^4y^5 + 7x^5y^4 \] and we want to divide it by: \[ 7x^2y^2 \] ### Step 2: Divide each term separately We will divide each term of the polynomial by \(7x^2y^2\). 1. **First term:** \[ \frac{-14x^6y^3}{7x^2y^2} \] - Divide the coefficients: \(-14 \div 7 = -2\) - For \(x\): \(x^6 \div x^2 = x^{6-2} = x^4\) - For \(y\): \(y^3 \div y^2 = y^{3-2} = y^1\) - Result: \(-2x^4y\) 2. **Second term:** \[ \frac{-21x^4y^5}{7x^2y^2} \] - Divide the coefficients: \(-21 \div 7 = -3\) - For \(x\): \(x^4 \div x^2 = x^{4-2} = x^2\) - For \(y\): \(y^5 \div y^2 = y^{5-2} = y^3\) - Result: \(-3x^2y^3\) 3. **Third term:** \[ \frac{7x^5y^4}{7x^2y^2} \] - Divide the coefficients: \(7 \div 7 = 1\) - For \(x\): \(x^5 \div x^2 = x^{5-2} = x^3\) - For \(y\): \(y^4 \div y^2 = y^{4-2} = y^2\) - Result: \(x^3y^2\) ### Step 3: Combine the results Now we can combine the results from each term: \[ -2x^4y - 3x^2y^3 + x^3y^2 \] ### Final Answer The final result of the division is: \[ -2x^4y - 3x^2y^3 + x^3y^2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide -36x^(7)y^(6) z " by " - 12x^(2)y^(4)z^(3)

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

Simplify the following -21x^(5) y^(3) div 14x^(2)y^(7)

2x^2\X\ 3x y^2\X\ 4x^3y^5 is equal to: (a) 24 x^6y^6 (b) 24 x^6y^7 24 x^7y^6 (d) 24 x^7y^7

Divide: 3x^3y^2+2x^2y+15 x y\ b y\ 3x y x^2+7x+12\ b y\ x+4

Solve : (7 + x)/(5) - (2x - y)/(4) = 3y - 5 (5y - 7)/(2) + (4x - 3)/(6) = 18 - 5x

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

Divide: 3x^3+4x^2+5x+18\ b y\ x+2 & 14 x^2-53 x+45\ b y\ 7x-9

Multiply: (7x y+5y) by 3x y

Solve : 3x+ 2y = 14 - x+ 4y = 7