Home
Class 8
MATHS
Divide : 12x^(2) + 7xy - 12y^(2) by 3x...

Divide :
`12x^(2) + 7xy - 12y^(2)` by 3x + 4y

Text Solution

AI Generated Solution

The correct Answer is:
To divide the polynomial \( 12x^2 + 7xy - 12y^2 \) by \( 3x + 4y \), we will use polynomial long division. Here’s a step-by-step solution: ### Step 1: Set up the division We write the dividend \( 12x^2 + 7xy - 12y^2 \) under the long division symbol and the divisor \( 3x + 4y \) outside. ### Step 2: Divide the leading terms We need to determine what to multiply \( 3x \) by to get \( 12x^2 \). \[ \frac{12x^2}{3x} = 4x \] So, we will multiply \( 3x + 4y \) by \( 4x \). ### Step 3: Multiply and subtract Now we multiply \( 4x \) by \( 3x + 4y \): \[ 4x \cdot (3x + 4y) = 12x^2 + 16xy \] Now, we subtract this from the original polynomial: \[ (12x^2 + 7xy - 12y^2) - (12x^2 + 16xy) = (7xy - 16xy) - 12y^2 = -9xy - 12y^2 \] ### Step 4: Repeat the process Now, we need to divide the leading term of the new polynomial \( -9xy \) by \( 3x \): \[ \frac{-9xy}{3x} = -3y \] So, we will multiply \( 3x + 4y \) by \( -3y \). ### Step 5: Multiply and subtract again Now we multiply \( -3y \) by \( 3x + 4y \): \[ -3y \cdot (3x + 4y) = -9xy - 12y^2 \] Now, we subtract this from the polynomial we obtained in the last step: \[ (-9xy - 12y^2) - (-9xy - 12y^2) = 0 \] ### Conclusion Since the remainder is \( 0 \), the division is complete. The result of the division is: \[ 4x - 3y \] ### Final Answer Thus, the answer to the division of \( 12x^2 + 7xy - 12y^2 \) by \( 3x + 4y \) is: \[ \boxed{4x - 3y} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Factorise : (iv) 5x^(2) - 4xy - 12y^(2)

Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)

Multiply : 3x^(2) y - 7xy^(2) +2xy" by " 4xy

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Divide -36x^(7)y^(6) z " by " - 12x^(2)y^(4)z^(3)

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y

Solve the following equations for (x - 3)^(2) and (y + 2)^(2) : 2x^(2) + y^(2) - 12x + 4y + 16 = 0 and 3x^(2) - 2y^(2) - 18x - 8y + 3 = 0 .

Divide 14x^(3)y^(2) + 8x^(2)y^(3) - 22xy^(4) " by " -2xy^(2)

Factorize: 12 x^2+7x y-10 y^2

Factorise : 3x^(5) y - 27 x^(4) y^(2) + 12x^(3) y^(3)