Home
Class 8
MATHS
Divide : 6x^(3) - 13x^(2) - 13x + 30 b...

Divide :
`6x^(3) - 13x^(2) - 13x + 30` by `2x^(2) - x - 6`

Text Solution

AI Generated Solution

The correct Answer is:
To divide the polynomial \(6x^3 - 13x^2 - 13x + 30\) by \(2x^2 - x - 6\), we will use polynomial long division. Here are the steps: ### Step 1: Set up the division We will divide \(6x^3 - 13x^2 - 13x + 30\) by \(2x^2 - x - 6\). ### Step 2: Divide the leading terms Divide the leading term of the dividend \(6x^3\) by the leading term of the divisor \(2x^2\): \[ \frac{6x^3}{2x^2} = 3x \] ### Step 3: Multiply and subtract Now, multiply the entire divisor \(2x^2 - x - 6\) by \(3x\): \[ 3x(2x^2 - x - 6) = 6x^3 - 3x^2 - 18x \] Now, subtract this from the original polynomial: \[ (6x^3 - 13x^2 - 13x + 30) - (6x^3 - 3x^2 - 18x) = (-13x^2 + 3x^2) + (-13x + 18x) + 30 \] This simplifies to: \[ -10x^2 + 5x + 30 \] ### Step 4: Repeat the process Now we need to divide \(-10x^2 + 5x + 30\) by \(2x^2 - x - 6\). Divide the leading term: \[ \frac{-10x^2}{2x^2} = -5 \] Now multiply the entire divisor by \(-5\): \[ -5(2x^2 - x - 6) = -10x^2 + 5x + 30 \] Subtract this from \(-10x^2 + 5x + 30\): \[ (-10x^2 + 5x + 30) - (-10x^2 + 5x + 30) = 0 \] ### Step 5: Conclusion Since the remainder is \(0\), we conclude that: \[ \frac{6x^3 - 13x^2 - 13x + 30}{2x^2 - x - 6} = 3x - 5 \] ### Final Answer: The result of the division is: \[ 3x - 5 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide : x^(6) - 8 by x^(2) - 2

Divide 6x^(4) by - 2x^(2)

Divide 6x^(4) - 9x^(3) + 18x^(2) " by " 3x

Divide : x^(2) + 3x - 54 by x - 6

Factorize: x^(3)-13x-12

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

If x^(2)-13x=30. what is x?

Find the quotient and the remainder (if any), when : 3x^(4) + 6x^(3) - 6x^(2) + 2x - 7 is divided by x - 3.

Divide: x^3-6x^2+11 x-6\ b y\ \ x^2-4x+3