Home
Class 8
MATHS
Divide : 4a^(2) + 12ab + 9b^(2) - 25c^...

Divide :
`4a^(2) + 12ab + 9b^(2) - 25c^(2)` by 2a + 3b + 5c

Text Solution

AI Generated Solution

The correct Answer is:
To divide the polynomial \(4a^2 + 12ab + 9b^2 - 25c^2\) by the binomial \(2a + 3b + 5c\), we will use polynomial long division. Here’s the step-by-step solution: ### Step 1: Set up the division We will divide \(4a^2 + 12ab + 9b^2 - 25c^2\) by \(2a + 3b + 5c\). ### Step 2: Divide the leading term The leading term of the dividend is \(4a^2\) and the leading term of the divisor is \(2a\). We divide these: \[ \frac{4a^2}{2a} = 2a \] This means the first term of our quotient is \(2a\). ### Step 3: Multiply and subtract Now we multiply \(2a\) by the entire divisor \(2a + 3b + 5c\): \[ 2a(2a + 3b + 5c) = 4a^2 + 6ab + 10ac \] Next, we subtract this from the original polynomial: \[ (4a^2 + 12ab + 9b^2 - 25c^2) - (4a^2 + 6ab + 10ac) \] This simplifies to: \[ (12ab - 6ab) + 9b^2 - 10ac - 25c^2 = 6ab + 9b^2 - 10ac - 25c^2 \] ### Step 4: Repeat the process Now we take the new polynomial \(6ab + 9b^2 - 10ac - 25c^2\) and divide the leading term \(6ab\) by the leading term of the divisor \(2a\): \[ \frac{6ab}{2a} = 3b \] So, the next term in our quotient is \(3b\). ### Step 5: Multiply and subtract again Multiply \(3b\) by the divisor: \[ 3b(2a + 3b + 5c) = 6ab + 9b^2 + 15bc \] Now, subtract this from the current polynomial: \[ (6ab + 9b^2 - 10ac - 25c^2) - (6ab + 9b^2 + 15bc) \] This simplifies to: \[ (-10ac - 25c^2 - 15bc) = -10ac - 25c^2 - 15bc \] ### Step 6: Divide the leading term again Now we take the leading term \(-10ac\) and divide by \(2a\): \[ \frac{-10ac}{2a} = -5c \] So, the next term in our quotient is \(-5c\). ### Step 7: Multiply and subtract one last time Multiply \(-5c\) by the divisor: \[ -5c(2a + 3b + 5c) = -10ac - 15bc - 25c^2 \] Now, subtract this from the current polynomial: \[ (-10ac - 25c^2 - 15bc) - (-10ac - 15bc - 25c^2) = 0 \] This means there is no remainder. ### Final Result The quotient of the division is: \[ \boxed{2a + 3b - 5c} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide : 18a^(3)b^(2) - 27 a^(2)b^(3) +9ab^(2) by 3ab

Factorize : 25a^(2) - 9b^(2) + 12bc - 4c^(2)

Factorise: 25a^(2) - 9b^(2) + 12bc - 4c^(2)

Divide: (a^2+2a b+b^2)-(a^2+2a c+c^2)b y\ 2a+b+c

Factorise : 2ab^(2) c - 2a + 3b^(3) c - 3b - 4b^(2) c^(2) + 4c

Factorise completely : 4a^(2) - 12 ab + 9b^(2) + 4a - 6b

Divide : 63a^(4)b^(5)c^(6) by -9a^(2)b^(4)c^(3)

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

Factorise: 4(2a - b+c) ^(2) - 9 ( a+b- c) ^(2)

Factorise by taking at the common factors: (i) ab(a^(2) + b^(2) -c^(2))-bc(c^(2)-a^(2) - b^(2)) +ca(a^(2) + b^(2)-c^(2)) (ii) 2x(a-b) +3y(5a-5b) + 4z(2b-2a)