Home
Class 8
MATHS
Divide : 16 + 8x + x^(6) - 8x^(3) - 2x...

Divide :
`16 + 8x + x^(6) - 8x^(3) - 2x^(4) + x^(2)` by `x + 4 - x^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To divide the polynomial \( 16 + 8x + x^6 - 8x^3 - 2x^4 + x^2 \) by \( x + 4 - x^3 \), we will use the long division method. Here’s the step-by-step solution: ### Step 1: Arrange the Polynomials First, we need to write both the dividend and the divisor in standard form (descending order of powers). **Dividend:** \[ x^6 - 2x^4 - 8x^3 + x^2 + 8x + 16 \] **Divisor:** \[ -x^3 + x + 4 \] ### Step 2: Divide the Leading Terms Next, we divide the leading term of the dividend by the leading term of the divisor. \[ \frac{x^6}{-x^3} = -x^3 \] ### Step 3: Multiply and Subtract Now, we multiply the entire divisor by \(-x^3\) and subtract the result from the dividend. **Multiplication:** \[ -x^3(-x^3 + x + 4) = x^6 - x^4 - 4x^3 \] **Subtraction:** \[ (x^6 - 2x^4 - 8x^3 + x^2 + 8x + 16) - (x^6 - x^4 - 4x^3) \] This simplifies to: \[ (-2x^4 + x^4) + (-8x^3 + 4x^3) + x^2 + 8x + 16 = -x^4 - 4x^3 + x^2 + 8x + 16 \] ### Step 4: Repeat the Process Now we repeat the process with the new polynomial \(-x^4 - 4x^3 + x^2 + 8x + 16\). **Divide the leading terms:** \[ \frac{-x^4}{-x^3} = x \] **Multiply and Subtract:** \[ x(-x^3 + x + 4) = -x^4 + x^2 + 4x \] Now we subtract: \[ (-x^4 - 4x^3 + x^2 + 8x + 16) - (-x^4 + x^2 + 4x) \] This simplifies to: \[ (-4x^3 + 8x - 4x + 16) = -4x^3 + 4x + 16 \] ### Step 5: Continue the Division Now we continue with \(-4x^3 + 4x + 16\). **Divide the leading terms:** \[ \frac{-4x^3}{-x^3} = 4 \] **Multiply and Subtract:** \[ 4(-x^3 + x + 4) = -4x^3 + 4x + 16 \] Now we subtract: \[ (-4x^3 + 4x + 16) - (-4x^3 + 4x + 16) = 0 \] ### Final Result Since the remainder is 0, we conclude that: \[ \text{The quotient is } -x^3 + x + 4 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(C)|45 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Divide 8x^(3) by 2x^(2)

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)

Factorise : 16 x^(2) - 8x - 3

Simplify : (x^(4) - 16) / (x^(3) + 2x^(2)+ 4x + 8 )

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

Differentiate the following functions: 7x^(6) + 8x^(5) - 3x^(4) + 11x^(2) + 6x+7

Differentiate the following functions: 12. 8x^(3) - x^(2) + 5 - (2)/( x ) + (4)/( x^3) .

Divide : 6+x-4x^2+x^3\ by \ \ x-3.