Home
Class 8
MATHS
Simplify : x - y - {x-y - (x+y)-bar(x-...

Simplify :
`x - y - {x-y - (x+y)-bar(x-y)}`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( x - y - \{ x - y - (x + y) - \overline{(x - y)} \} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the original expression: \[ x - y - \{ x - y - (x + y) - \overline{(x - y)} \} \] ### Step 2: Simplify inside the curly braces First, we simplify the expression inside the curly braces: \[ x - y - (x + y) - \overline{(x - y)} \] This can be rewritten as: \[ x - y - x - y - \overline{(x - y)} \] ### Step 3: Combine like terms Now, combine the like terms: \[ (x - x) + (-y - y) - \overline{(x - y)} = 0 - 2y - \overline{(x - y)} = -2y - \overline{(x - y)} \] ### Step 4: Substitute back into the original expression Now, substitute this back into the original expression: \[ x - y - (-2y - \overline{(x - y)}) \] This simplifies to: \[ x - y + 2y + \overline{(x - y)} \] ### Step 5: Combine the terms Now, combine the terms: \[ x + (2y - y) + \overline{(x - y)} = x + y + \overline{(x - y)} \] ### Step 6: Final expression Thus, the simplified expression is: \[ x + y + \overline{(x - y)} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : 3x - [3x - {3x - (3x - bar(3x - y))}]

Simplify x - [ y - { z - (2x - bar(y+z)) }]

Simplify : (4x - 5y)(5x - 4y)

Simplify 3x(x-y) -y (x+y)

Simplify : 3x - [4x - bar(3x -5y) - 3{2x - (3x - bar(2x - 3y))}]

Simplify: x/(x-y)-y/(x+y)-(2x y)/(x^2-y^2)

Simplify: x^2(x+2y)(x-3y)

Simplify 2(x-2y )- 3 (x+2y+1) +5

Simplify: 5+[x-{2y-(6x+y-4)+2x^2}-(x^2-2y)]

Simplify: [5-3x+2y-(2x-y)]-(3x-7y+9)