Home
Class 8
MATHS
Simplify : -3(1-x^(2)) - 2{x^(2) - (3-...

Simplify :
`-3(1-x^(2)) - 2{x^(2) - (3-2x^(2))}`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(-3(1 - x^2) - 2(x^2 - (3 - 2x^2))\), we will follow these steps: ### Step 1: Distribute the terms in the first bracket We start with the first part of the expression: \[ -3(1 - x^2) = -3 \cdot 1 + 3 \cdot x^2 = -3 + 3x^2 \] So, the expression now looks like: \[ -3 + 3x^2 - 2(x^2 - (3 - 2x^2)) \] ### Step 2: Simplify the second bracket Next, we simplify the second part: \[ x^2 - (3 - 2x^2) = x^2 - 3 + 2x^2 = 3x^2 - 3 \] Thus, we replace the second bracket in the expression: \[ -3 + 3x^2 - 2(3x^2 - 3) \] ### Step 3: Distribute the \(-2\) across the second bracket Now, we distribute \(-2\): \[ -2(3x^2) + 2(3) = -6x^2 + 6 \] So, the expression now becomes: \[ -3 + 3x^2 - 6x^2 + 6 \] ### Step 4: Combine like terms Now, we combine the like terms: 1. Combine the \(x^2\) terms: \(3x^2 - 6x^2 = -3x^2\) 2. Combine the constant terms: \(-3 + 6 = 3\) Putting it all together, we have: \[ -3x^2 + 3 \] ### Final Expression Thus, the simplified expression is: \[ 3 - 3x^2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : 7x -[2-3(1-3x)]

Simplify : p^(2)x - 2{px - 3x(x^(2) - bar(3a - x^(2)))}

Simplify : 15x-[8x^2 + 3x^2 - {8x^2 - (4-2x-x^3)-5x^3}-2x]

Simplify: x^2(x+2y)(x-3y)

Simplify : (x^((1)/(3)) - x^(-(1)/(3)))(x^((2)/(3)) +1+x^(-(2)/(3)))

Simplify: -4x^(2)+{(2x^(2)-3)-(4-3x^(2))}

Simplify: (5-x)(3-2x)(4-3x)

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

Simplify : (7x - 8)(3x + 2)

Simplify : (x^(4) - 16) / (x^(3) + 2x^(2)+ 4x + 8 )