Home
Class 8
MATHS
Simplify : 2{m - 3(n + bar(m- 2n))}...

Simplify :
`2{m - 3(n + bar(m- 2n))}`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 2(m - 3(n + \overline{m - 2n})) \), we will follow a systematic approach. ### Step 1: Simplify the inner expression First, we need to simplify the expression inside the bar. The expression is \( m - 2n \). ### Step 2: Apply the bar notation The bar notation indicates that we need to consider the negation of the expression. Therefore, \( \overline{m - 2n} = - (m - 2n) = -m + 2n \). ### Step 3: Substitute back into the expression Now, substitute this back into the original expression: \[ 2(m - 3(n + \overline{m - 2n})) = 2(m - 3(n + (-m + 2n))) \] This simplifies to: \[ 2(m - 3(n - m + 2n)) \] ### Step 4: Combine like terms Now, simplify the expression inside the parentheses: \[ n - m + 2n = 3n - m \] So the expression becomes: \[ 2(m - 3(3n - m)) \] ### Step 5: Distribute the -3 Next, distribute the \(-3\): \[ 2(m - 9n + 3m) = 2(4m - 9n) \] ### Step 6: Multiply by 2 Now, multiply the entire expression by 2: \[ 2(4m - 9n) = 8m - 18n \] ### Final Result Thus, the simplified expression is: \[ 8m - 18n \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : 2[6 + 4{m - 6(7-bar(n+p)) + q}]

Simplify: (6m-n)(6m+n)

Simplify m - n+2 [ m - {m - (m+n-2) -1} +1] Hence , find its value when m = n approx 1

Simplify: 2m-3n+5p+2m+n-2p-3m-4n+p

Simplify the following algebraic expressions : - m+n - [2m - { m - 3 (m+n) - (2m - n )}]

Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

Simplify: (m^2-n^2m)^2+2m^3n^2

Simplify: (16 m^3y^2)/(4m^2y) (2) (32 m^2n^3p^2)/(4m n p)

Simplify : ((a^(m))/(a^(n)))^(m+n)((a^(n))/(a^(l)))^(n+l)((a^(l))/(a^(m)))^(l+m)