Home
Class 8
MATHS
Simplify : 3x - [3x - {3x - (3x - bar(...

Simplify :
`3x - [3x - {3x - (3x - bar(3x - y))}]`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 3x - [3x - \{3x - (3x - \bar{(3x - y)})\}] \), we will follow the order of operations, also known as the BODMAS/BIDMAS rule (Brackets, Orders, Division and Multiplication, Addition and Subtraction). We will work from the innermost brackets to the outermost. ### Step-by-Step Solution: 1. **Identify the innermost expression**: We start with the innermost expression: \( \bar{(3x - y)} \). The bar indicates that we are subtracting \( (3x - y) \) from \( 3x \). 2. **Simplify the innermost expression**: \[ 3x - \bar{(3x - y)} = 3x - (3x - y) = 3x - 3x + y = y \] Now, we replace \( \bar{(3x - y)} \) with \( y \). 3. **Substitute back into the expression**: Now the expression becomes: \[ 3x - [3x - \{3x - (y)\}] \] 4. **Simplify the next innermost expression**: \[ 3x - (y) = 3x - y \] Now, we replace \( 3x - (y) \) with \( 3x - y \). 5. **Substitute back into the expression**: The expression now is: \[ 3x - [3x - (3x - y)] \] 6. **Simplify the next bracket**: \[ 3x - (3x - y) = 3x - 3x + y = y \] Now, we replace \( 3x - (3x - y) \) with \( y \). 7. **Substitute back into the expression**: The expression now is: \[ 3x - [y] \] 8. **Final simplification**: \[ 3x - y \] ### Final Answer: The simplified expression is: \[ 3x - y \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify: x - (3 - x)

Simplify : 3x - [4x - bar(3x -5y) - 3{2x - (3x - bar(2x - 3y))}]

Simplify : (7x - 8)(3x + 2)

Simplify : 7x -[2-3(1-3x)]

Simplify : p^(2)x - 2{px - 3x(x^(2) - bar(3a - x^(2)))}

Simplify: (3x-2)(x-1)(3x+5)

Simplify 3x(x-y) -y (x+y)

Simplify: (5-x)(3-2x)(4-3x)

Simplify: (5x+3)(x-1)(3x-2)

Simplify : 15x-[8x^2 + 3x^2 - {8x^2 - (4-2x-x^3)-5x^3}-2x]