Home
Class 8
MATHS
Simplify : 2[6 + 4{m - 6(7-bar(n+p)) +...

Simplify :
`2[6 + 4{m - 6(7-bar(n+p)) + q}]`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 2[6 + 4(m - 6(7 - \bar{(n + p)}) + q)] \), we will follow the order of operations (BODMAS/BIDMAS). Here’s the step-by-step solution: ### Step 1: Simplify the innermost expression Start with the innermost part of the expression, which is \( 7 - \bar{(n + p)} \). The bar notation indicates negation, so we can rewrite it as: \[ 7 - (n + p) = 7 - n - p \] ### Step 2: Substitute back into the expression Now, substitute this back into the expression: \[ 2[6 + 4(m - 6(7 - n - p) + q)] \] ### Step 3: Distribute the -6 Next, we need to distribute the -6 across the terms inside the parentheses: \[ m - 6(7 - n - p) + q = m - 42 + 6n + 6p + q \] ### Step 4: Substitute back again Now substitute this back into the expression: \[ 2[6 + 4(m - 42 + 6n + 6p + q)] \] ### Step 5: Distribute the 4 Now, distribute the 4: \[ 4(m - 42 + 6n + 6p + q) = 4m - 168 + 24n + 24p + 4q \] ### Step 6: Combine with the outer expression Now combine this with the 6 from the outer expression: \[ 6 + 4m - 168 + 24n + 24p + 4q = 4m + 24n + 24p + 4q - 162 \] ### Step 7: Multiply by 2 Now multiply the entire expression by 2: \[ 2(4m + 24n + 24p + 4q - 162) = 8m + 48n + 48p + 8q - 324 \] ### Final Result Thus, the simplified expression is: \[ 8m + 48n + 48p + 8q - 324 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : 2{m - 3(n + bar(m- 2n))}

Simplify : (8) 1/4 - (2) 5/6

Simplify : 5y xx [6y div 3 + {4 - (3y - bar(2y - 4))}]

Simplify : 3a xx [8b div 4 - 6{a - (5a - bar(3b - 2a))}]

Simplify: 4 2/3-\ 3 1/4+\ 2 1/6

Simplify: 7+7/4+5 1/6

Simplify: 8 1/4-\ 2 5/6

Simplify: (6m-n)(6m+n)

Simplify : (-6)-{(-28)div(-7)}

Simplify: 7 1/3+\ 3 2/3+\ 5 1/6