Home
Class 8
MATHS
Simplify : a - [a - bar(b + a) - {a - ...

Simplify :
`a - [a - bar(b + a) - {a - (a - bar(b-a))}]`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( a - [a - \overline{(b + a)} - \{a - (a - \overline{(b - a)})\}] \), we will follow the order of operations and simplify step by step. ### Step 1: Identify and simplify the innermost expressions Start with the innermost expression \( a - \overline{(b - a)} \). - The expression \( b - a \) is negated, so it becomes \( -b + a \) or \( a - b \). - Therefore, \( \overline{(b - a)} = a - b \). Now, substitute this back into the expression: \[ a - [a - \overline{(b + a)} - \{a - (a - (a - b))\}] \] ### Step 2: Simplify \( a - (a - (a - b)) \) Now simplify the expression inside the curly brackets: 1. \( a - (a - b) = a - a + b = b \). Now substitute this back into the expression: \[ a - [a - \overline{(b + a)} - b] \] ### Step 3: Simplify \( \overline{(b + a)} \) Next, we need to simplify \( \overline{(b + a)} \): 1. The expression \( b + a \) is negated, so it becomes \( -b - a \). Now substitute this back into the expression: \[ a - [a - (-b - a) - b] \] ### Step 4: Simplify the brackets Now simplify the expression inside the brackets: 1. \( a - (-b - a) = a + b + a = 2a + b \). So now we have: \[ a - [2a + b - b] \] ### Step 5: Simplify further Now simplify the expression inside the brackets: 1. \( 2a + b - b = 2a \). So now we have: \[ a - 2a \] ### Step 6: Final simplification Now simplify \( a - 2a \): 1. \( a - 2a = -a \). Thus, the simplified expression is: \[ \boxed{-a} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Simplify : 3a xx [8b div 4 - 6{a - (5a - bar(3b - 2a))}]

Simplify : 3x - [4x - bar(3x -5y) - 3{2x - (3x - bar(2x - 3y))}]

Simplify : 2{m - 3(n + bar(m- 2n))}

Simplify : 5y xx [6y div 3 + {4 - (3y - bar(2y - 4))}]

Simplify : 3x - [3x - {3x - (3x - bar(3x - y))}]

Simplify x - [ y - { z - (2x - bar(y+z)) }]

Simplify : x - y - {x-y - (x+y)-bar(x-y)}

Simplify the following algebraic expressions : a^(2) - [b^(2) - {a^(2)-(2b^(2)- bar(a^(2)+b^(2)) }]

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

Let a ,b and c be any three nonzero complex number. If |z|=1 and' z ' satisfies the equation a z^2+b z+c=0, prove that a .bar a = c .bar c and |a||b|= sqrt(a c( bar b )^2)